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Foreword 

The work presented in this report was developed within the Integrated Project PAMINA: 
Performance Assessment Methodologies IN Application to Guide the Development of the 
Safety Case. This project is part of the Sixth Framework Programme of the European 
Commission. It brings together 25 organisations from ten European countries and one EC 
Joint Research Centre in order to improve and harmonise methodologies and tools for 
demonstrating the safety of deep geological disposal of long-lived radioactive waste for 
different waste types, repository designs and geological environments. The results will be of 
interest to national waste management organisations, regulators and lay stakeholders. 

The work is organised in four Research and Technology Development Components (RTDCs) 
and one additional component dealing with knowledge management and dissemination of 
knowledge: 

- In RTDC 1 the aim is to evaluate the state of the art of methodologies and approaches 
needed for assessing the safety of deep geological disposal, on the basis of 
comprehensive review of international practice. This work includes the identification of 
any deficiencies in methods and tools.  

- In RTDC 2 the aim is to establish a framework and methodology for the treatment of 
uncertainty during PA and safety case development. Guidance on, and examples of, 
good practice will be provided on the communication and treatment of different types of 
uncertainty, spatial variability, the development of probabilistic safety assessment tools, 
and techniques for sensitivity and uncertainty analysis. 

- In RTDC 3 the aim is to develop methodologies and tools for integrated PA for various 
geological disposal concepts. This work includes the development of PA scenarios, of 
the PA approach to gas migration processes, of the PA approach to radionuclide 
source term modelling, and of safety and performance indicators. 

- In RTDC 4 the aim is to conduct several benchmark exercises on specific processes, in 
which quantitative comparisons are made between approaches that rely on simplifying 
assumptions and models, and those that rely on complex models that take into account 
a more complete process conceptualization in space and time. 

The work presented in this report was performed in the scope of RTDC 2. 

All PAMINA reports can be downloaded from http://www.ip-pamina.eu.  
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1. Introduction 

 

One of the most important steps in doing performance assessment (PA) is a problem 

structuring, i.e. developing a mathematical model for the physical situation at hand. The 

model solution is a function of the model parameters (Φ), and is conditional on the model 

assumptions (M) and on the modeler’s current state of knowledge (H) [1]. Generally, there are 

uncertainties associated with the conditional model. In such a case the model solution 

),,|( HMAh Φ  should be expressed in the form of the conditional probability of the event of 

interest A that results from solving the conditional model.  

Further, the model uncertainties cover a wide variety of uncertainties, they comprise of 

aleatory (or stochastic) uncertainties as well as of epistemic (or state-of-knowledge) 

uncertainties. The selection of a proper mathematical model for an individual particular 

uncertainty of the model is fundamental, especially for the interpretation of ),,|( HMAh Φ , 

which may have no meaning as a (relative) frequency of occurrence of the event A. Rather, it 

may express a measure of the modeler’s  “degree of belief” in assessing the uncertainty of A. 
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The interpretation of probability has been the subject of scientific dispute for centuries. There 

have been selected three main categories of probability interpretations.  

1. The classical interpretation of probability, which is identified with the classical works of 

Pierre Simon Laplace [3], defines the probability of an event S as the fraction of favorable 

cases among the equally possible cases. In its applications, the classical probability takes the 

form of combinatorial probability and thus provides the framework for the derivation of the 

standard probability distributions, like the binomial distribution (expresses e.g. the probability 

of observing r failures in n independent trials), the Poisson distribution (expresses e.g. the 

probability of r failures occurring in a fixed period of time), or the exponential distribution 

(models e.g. the survival time of a radioactive particle), etc. 

2. The frequentist interpretation of probability determines the probability of an event S by 

its relative frequency of occurrence after repeating a process a large number of times under 

similar conditions.  The central idea of frequentist probability is the sample with its statistical 

parameters. The statistical parameters like a sample mean or a sample variance correspond, 

respectively, to the first and the second moment of the probability distribution of a random 

variable. Ultimately, the parameters can be utilized to estimate the parameters of a probability 

distribution [6].  

It is of course impossible to perform infinity of repetitions of a random experiment to 

determine the probability of an event. Rather, in practice, we are often restricted to only a 

limited number of repetitions of the process leading to different relative frequencies in 

different series of trials. If these relative frequencies are to define the probability, the 

probability will be slightly different every time it is measured. Thus, a frequentist estimate 

itself shall be assessed by using statistical measures like confidence intervals, tests of fit, etc. 

From a practical point of view, it is very difficult to propagate classical statistical confidence 

intervals through PA models to estimate a confidence interval for a result of interest [15].  
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3. Subjective probability is meant to be a measure of subjective confidence, or the degree to 

which the statement is supported by the available evidence. Although frequentist probabilities 

are purely associated with the events governed by some random physical phenomena, a 

subjective probability can be assigned to any statement, even when no random process is 

involved. 

The mathematical model of uncertainty should reflect and incorporate the level of available 

information. PA often requires the investigation of the consequence of rare event for which 

only few data are available.  In such a case it may be preferable to formalize uncertainty 

within the framework of the subjective theory of probability, by using one of the alternative 

ways that have been developed in the past decades. 

Mathematical approaches to modeling uncertainty will be reviewed in the Section 2. 

Following the recent review [7], a broad spectrum of approaches ranging from interval 

analysis, probability theory, to fuzzy sets and possibility theory will be presented 

hierarchically, ordered from the perspective of set functions. The Section 3 is devoted to the 

transferable belief model of uncertainty. The Section 4 exemplifies the power of subjective 

approaches to treating uncertainty. SWOT analysis is presented in the section Discussion.  

 

2. Mathematical approaches to the representation of uncertainty 

The main mathematical approaches to the modeling of uncertainty will be described in this 

section using a problem of modeling the uncertainty of a single scalar variable. A variable 

will be denoted by upper case, e.g. B; while its realization by lower case b.  

 Interval analysis 

The interval analysis is intended to estimate the bounds of the conditional model 

solutions. Any model uncertainty (input) is bounded within the interval [ ]UL bb , , 

determined by lower Lb  and upper Ub  limits (worst/best case assumption) without 
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considering detailed information on a probability structure. The model evaluations result 

in a set of the model solutions, which could be in general of arbitrary geometry. A set of 

the model solutions is an interval, if the conditional model is continuous with respect to B.  

The basic operations of interval arithmetic are:  

[ ] [ ] [ ]UULLULUL cbcbccbb ++=+ ,,, , 

[ ] [ ] [ ]LUULULUL cbcbccbb −−=− ,,, , 

[ ] [ ] [ ]),,,max(),,,,min(,, UULUULLLUULUULLLULUL cbcbcbcbcbcbcbcbccbb =× , 

[ ] [ ] [ ])/,/,/,/max(),/,/,/,/min(,/, UULUULLLUULUULLLULUL cbcbcbcbcbcbcbcbcccb =
 . 

The interval analysis is designed for cases when the probability structure of B is not 

known. However, if the probability structure of B is known, the method is not 

recommended. The input uncertainties are flattened out to the intervals ignoring thus 

available information.   

 Probability theory 

The probability theory describes the uncertainties by means of the probability 

distributions )(bpλ . The probability that the realizations of B lie in a set S is given by  

∫=∈
S

dbbpSBP )()( λ .  

The probability distribution )(bpλ  can be viewed as a member of a class of distributions 

which is parameterized by parameters λ.  Hence, the complete specification of a 

probability distribution requires determination of the class it belongs to as well as the 

values of its parameters. For example, the class of Weibull distributions  

( )αβ
α

λ ββ
α /

1

)( bebbp −
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= , ,0, >βα  ,0 ∞≤≤ b  

is given by a scale parameter β and a shape parameter α (Fig. 1).  
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Fig. 1. Parameterization of the Weibull distributions. A: a scale parameter β; B: a 

shape parameter α. 

 

The probability of the model solution ),,|( HMAh Φ is usually approximated by means of 

Monte Carlo simulations.  

To relax the precision inherent in a probabilistic model, the single measure can be 

replaced by a set of probability measures 

{ }Λ∈= λλ :pPM . 

The idea of a set of probability measures is inherent in Bayesian statistics, where the 

distribution parameters λ are considered to be random variables themselves. In the 

frequentist interpretation, statistical confidence regions induce parameterized families of 

distributions which in turn give raise to sets of probability measures [7].  

A set of probability measures defines lower and upper probabilities according to the rules 
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}:)(inf{)( PMPSAPSAP ∈∈=∈ ,  }:)(sup{)( PMPSAPSAP ∈∈=∈ . 

If model uncertainties are represented through a set PM of probability measures, the 

model solutions form a set of probability measures as well. The corresponding lower and 

upper probabilities are computed by solving an optimization problem. 

 

 Random sets  

Formally, the random set RS, also referred to as the Dempster-Shafer structure, is the set 

of all possible sub-sets BBi B of  the universal set X (the set of all states under consideration), 

including the empty set Ø. Each sub-set BBi B is mapped into the interval [0,1] by means of 

the m function ]1,0[)(: →XRSm  satisfying two constrains: m(Ø)=0, 1)(
)(

=∑
∈ XRSB

i
i

Bm . A 

function m is called a basic belief assignment and its value is named a basic belief mass 

(bbm). The lower and upper probabilities are defined by two non-additive continuous 

measures 

)()()()()( SPSplSPSbelSP ≡≤≤≡ . 

The degree of belief of S, bel(S), determines the total amount of justified specific support 

given to S. It is obtained by summing all the basic belief masses of subsets BBi Bof S 

∑
⊂

=
SB

i
i

BmSbel )()( . 

We stated “justified” as bel(S) sums up only the basic belief masses given to subsets of S. 

The degree of plausibility of S, pl(S), determines the maximum amount of potential 

specific support that could be given to S. It is defined as the sum all the basic belief 

masses of the sets BBi B that intersect S 

∑
≠∩

=
0

)()(
SB

i
i

BmSpl . 

We say “potential” as pl(S) includes the basic belief masses that could be transferred to 

non-empty subsets of S if some new information could justify such a transfer. 
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The two measures are related by )(1)( SbelSpl −= .  

The combination (the joint mass)  2112 mmm ⊕=  of two independent sets of mass 

assignments is determined by Dempster's rule of combination  

∑
∑

=∩

≠=∩

−
=⊕=

0
21

0
21

2112 )()(1

)()(
))(()(

CB

SCB

CmBm

CmBm
SmmSm . 

Dempster-Shafer theory is a generalization of the Bayesian theory of subjective 

probability. The theory is based on two ideas: the idea of obtaining degrees of belief for 

one question from subjective probabilities for a related question, and Dempster's rule for 

combining such degrees of belief when they are based on independent items of evidence.  

These ideas can be illustrated by taking the examples published in [13,14]. 

Let us suppose that the subject B tells us that a tree fell on car. We assign to the subject B 

the subjective probability of 0.9 that B is reliable; our subjective probability that B is 

unreliable is 0.1. B's statement is true if B is reliable, but it is not necessarily false if B is 

unreliable. Thus, we say that B's testimony alone justifies a 0.9 degree of belief that a tree 

fell on car, but only a zero degree of belief (not a 0.1 degree of belief) that no tree fell on 

car. This zero does not mean that we are sure that no limb fell on car, as a zero probability 

does; it merely means that B's testimony gives us no reason to believe that no tree fell on 

car.   

To illustrate Dempster's rule for combining degrees of belief let us consider two 

independent witnesses by subjects B and C of the reliabilities PB1 B and PB2B, respectively. 

Using independence to compute joint probabilities, the probability that both are reliable is 

PB1 BPB2 B, the probability that neither is reliable is (1-PB1 B)(1-PB2 B), and the probability that at least 

one is reliable is 1- (1-PB1 B)(1-PB2 B). If they both claim that a tree fell on car, at least one of 

them is reliable, and hence we may assign this event a degree of belief of 1- (1-PB1 B)(1-PB2 B). 

Suppose, on the other hand, that B and C contradict each other: B says that a tree fell on 
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car, and C says no tree fell on car. Their reliabilities are no longer subjectively 

independent for us. They can not be simultaneously right, only one is reliable, or neither is 

reliable. In such a case, our degree of belief in B's testimony is defined as
21

21
12 1

)1(
PP
PP

P
−
−

= , 

our degree of belief in C's testimony is
21

12
21 1

)1(
PP
PP

P
−
−

= . Hence we have a PB12B degree of 

belief that a tree did fall on car (because B is reliable) and a PB21B degree of belief that no 

tree fell on car (because C is reliable). 

Pearl has argued [9,10] that it is misleading to interpret belief functions as representing 

either probabilities of an event, or the confidence one has in the probabilities assigned to 

various outcomes, or degrees of belief (or confidence, or trust) in a proposition, or degree 

of ignorance in a situation. Instead, according to Pearl, belief functions represent the 

probability that a given proposition is provable from a set of other propositions, to which 

probabilities are assigned. 

Baudrit et al proposed the unified representation of incomplete probabilistic knowledge 

which can be encountered in risk evaluation problems [2]. Among others, proposed 

approach uses belief functions.  

Fuzzy sets  

Fuzzy sets can be interpreted as ordered families of sets or as membership functions [7]. 

Let B denotes a fuzzy real number. According to the first interpretation, B is considered as 

a family of parameterized intervals. The parameterization is determined by levels α; 

]1,0[∈α . There corresponds to each α level an interval αB  so that αβ BB ⊂  if .βα ≤  

The intervals are nested and they can be characterized by their left/right contour functions 

(Fig. 2). 
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Fig. 2. Fuzzy set as ordered family of sets. Adopted from [7]. 

 

In the view of the second approach to fuzzy sets, a fuzzy set B is considered as a 

transformation of the real line to the interval [0,1], [ ]1,0)( →bBπ  , where b denotes a real 

number (Fig. 3). )(bBπ  is interpreted as the membership degree to which b belongs to the 

fuzzy set B, or as the degree of possibility that the scalar variable B takes the value b. The 

 

Fig. 3. Fuzzy set as degree of possibility. Adopted from [7]. 

 

intervals from the first interpretation are called α-level sets { }απα ≥= )(: bbB B [7].  

It is possible to introduce a possibility measure on the underlying set 

{ }SbbS BB ∈= :)(sup)( ππ . It determines the degree of possibility that the parameter B 
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takes a value in S.  A possibility measure is in one-to-one correspondence with fuzzy sets; 

given a possibility measure π, its evaluation on singletons defines the membership 

function of a fuzzy set. 

Oberguggenberger proposed the following procedure for constructing a fuzzy set [7].  At 

the beginning of the procedure the linguistic meaning of the α-values is specified verbally 

by the designing engineer and it remains fixed during the whole modeling process. For 

example, α=1 denotes the standard value of B, α=2/3 indicate high degree of possibility, 

α=1/3 and α=0 represent, respectively, medium, and low degree of possibility. The 

procedure starts by specifying the standard value bBs B of B (deterministic approximation). 

The degree of possibility α=1 is assigned to bBs B. In the next step, possible deviations of B 

from the standard valueB Bare taken into account by gradually decreasing the degree of 

possibility until minimal and maximal possible values of B are reached at the level α=0 

(low possibility)(Fig. 4). 

Another useful method allowing to determine a fuzzy set from a little sample of data  can 

be found in [19].  

The propagating of a fuzzy input B through a model, here formally denoted by a 

transformation c=F(b), is determined by the Zadeh extension principle [18] given by 

}.)(:)(sup{)()( cbFbc BBF == ππ  

If the input consists of a vector of parameters ( )mBBB ,,1 K= , the principle takes the form 

}.),,(:))(,),(sup{min()( 11)( 1
cbbFbbc mmBBBF m

== KK πππ  

The Zadeh extension principle can be intuitively interpreted from the possibilistic point of 

view as the following. To determine the membership degree of the dependent variable 

c=F(bB1 B,bB2 B), we should consider all possible combinations of (bB1 B,bB2 B) providing c. Each 

single combination is evaluated by the degree of possibility ))(),(min( 21 21
bb BB ππ  and the 

final result is given by the maximal degree of possibility (supremum) [4].  
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Fig. 4. Procedure for constructing a fuzzy set. Adopted from [7]. 

A variety of applications of fuzzy models in civil engineering developed by the research 

group of the University of Innsbruck is reviewed in [4]. 

In practice, it may occur that certain model parameters can be reasonably represented by 

probability distributions, while others are better represented by fuzzy numbers due to data 

scarcity. Guyonnet et al [5] proposed a hybrid approach which combines Monte Carlo 
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sampling of probability distribution functions with fuzzy calculus. The approach was applied 

to a real case of estimation of human exposure to cadmium present in the soils located in the 

north of France.  

 An extensive list of references on approaches briefly introduced in this section can be found 

in [7]. 

3. The transferable belief model 

The transferable belief model (TBM) is intended to represent quantified beliefs based on 

belief functions. Within the TBM, beliefs are quantified at two levels: 1) a credal level where 

beliefs are entertained and quantified by belief functions, 2) a pignistic level where beliefs are 

used to make decisions and are quantified by probability functions [16, 17].  

The TBM postulates 1) the existence of the bbm and 2) the bbm given to a set S is transferred 

to subsets of S when new information becomes available. All other properties of the TBM are 

derived from very general principle [16]. 

Although the TBM shares the same concepts as considered by a generalization of the 

Bayesian model, a random sets model, or an upper and lower probability model, the TBM 

relies on its own interpretation of the Dempster-Shafer model.  

The set of belief functions at the credal level are transformed to the set of probability 

functions at the pignistic level by means of the pignistic transformation 

∑
ℜ∈

∩
=

C C
CS

CmSBetP )()( , 

whereℜ  denotes the Boolean algebra of the subsets of  the universe of discourse. 

The TBM is supplied with several tools such as a rule of minimal commitment, a cautious rule 

of (conjunctive) combination, a rule of discounting weighted beliefs received from a partially 

reliable source, etc. Those concepts are perfectly justified within the framework of the TBM, 

although many of them are often erroneously considered as arbitrary [16]. 
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According to the principle of minimal commitment, when several belief functions are 

compatible with our knowledge, we should select the one that gives the minimum support to 

every propositions (when possible). The selected belief function is called the least committed. 

The principle corresponds to: 'don't give more support than justify'. The principle will be 

illustrated by considering a simple expert judgment problem of assessing an unknown 

probability P [16]. Let us suppose that the expert is asked to bet that P is in some intervals of 

[0,1]. And assume that the data collected from the expert will be some percentiles x BpB of the 

meta-probability distribution about P. The meta-probability function corresponds to the 

pignistic probability function pxPBetP p =≤ )(  and thus the problem is to find the belief 

function which pignistic transformation satisfies the known constraints, i.e. )( pxPBetP ≤ . 

Suppose the collected percentiles similar as in [16]: xB0.05B=0.5, xB0.5 B=0.7 and xB0.95B=0.8.  

The first step is to determine bbm corresponding to the whole interval [0,1]. It should be 

compatible with BetP([0,0.5])=0.05 and it is spread equally on the interval [0,1] by the 

pignistic transformation. These constrains are satisfied by m([0,1])=0.1. The next step is to 

account for the constraint imposed to the interval [0.8,1] by xB0.95 B which determines the 

pignistic probability of [0.8,1]  as BetP([0.8,1])=0.05. The [0.8,1] interval  receives a 

probability of m([0,1])(1-0.8)=0.02 from the interval [0,1]. The missing piece of the pignistic 

probability, BetP([0.8,1])-0.02=0.03, is assigned to the largest remaining interval [0.5, 1]. 

Knowing that the portion of [0.5,1] which contributes to [0.8,1] is 2/5, it is readily found that 

m([0.5,1])=0.03*5/2=0.075. By using similar procedure, Smets derived bbms of the 

remaining intervals. The m-values are m([0.5,0.8])=0.6 and m([0.5,0.7])=0.225. 

If we know a priori the reliability of the expert, the data provided by the expert must be 

reduced as they are not fully reliable. Let α denotes the strength of the reliability we give to 

the expert knowledge. Then, according to the discounting principle [12], all degree of belief 

bel(S) are reduced by a factor α and the amount of bbm lost by this process is reallocated to 

the whole interval [0,1]: 
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)()( SbelSbel αα = ,  for all ℜ∈S , ]1,0[≠S  . 

A value α=1 denotes a full reliability, α=0 represents a total unreliability. 

Let us assign the reliability of α=0.8 to the expert from the above example. Then the belief 

function αbel  is characterized by the following bbm: 28.0])1,0([ =αm , 06.0])1,5.0([ =αm , 

48.0])8.0,5.0([ =αm , 18.0])7.0,5.0([ =αm . 

The interested reader is referred to the following internet sources:  

• publications on the TBM by Smets et al:  

HTUhttp://iridia.ulb.ac.be/~psmets/AABPapers.htmlUTH 

• software implementation of  the TBM (written in MATLAB): 

HTUhttp://iridia.ulb.ac.be/~psmets/#GUTH . 

 

 

 

4. Examples 

This section exemplifies the power of subjective approaches to treating uncertainty.   

4.1. The murder of Mr. Jones 

To show the importance of deciding which of the two concurrent models, the TBM or the 

Bayesian, could be best, we investigate the problem of Mr. Jones’s murder [14]. It will be 

shown that the two analysis lead to diametrically opposed conclusions. The choice between 

the two models is thus an important issue. 

4.1.1. The problem 

I am a judge analyzing the Mr. Jones’s case. I know that Mr. Jones was murdered by one of 

the three people whose names are Peter, Paul and Mary (evidence EB0 B). I also know that the 

killer was selected by a throw of a dice. The applied rule was: if it is an even number, the 
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killer will be female, if it is an odd number, the killer will be male (evidence EB1B). But I do not 

know: I) what the outcome was, and II) in the case of an odd number, how it would be 

decided between Peter and Paul. Thus, my bet supported by the available information 

(evidences E B0 B, EB1 B) is 1 to 1 for male versus female. 

Afterwards, I learn that Peter was not selected. He went to the police station at the time of the 

killing in order to have a perfect alibi (evidence EB2 B). How I should bet now on male versus 

female? The applications of the TBM and the Bayesian model lead to significantly different 

answers. The TBM approach suggests maintaining the bet 1 to 1, the Bayesian model supports 

the bet 1 to 2. The detailed analysis of the problem follows for each approach separately. 

4.1.2. The TBM analysis 

The evidence EB0 B and its basic belief assignment mB0 B are: 

                         EB0 B:   },,{ MaryPaulPeterk =Ω∈ ,   Ω=ℜ 20  

                                 ,1}),,({0 =MaryPaulPeterm     

where k denotes the killer.  

The dice throwing experiment (evidence EB1B) gives belief assignment mB1 B: 

                         EB1 B:   },{1 MaleFemale=ℜ   

                                  5.0)(1 =Femalem , 5.0)(1 =Malem .        

Conditioning mB0 B on EB1 B by Dempster's rule of conditioning induces mB01 B: 

                         EB01B:    EB0 B and EB1 B,  Ω=ℜ 201  

                                   5.0})Mary({01 =m , 5.0)Paul} {Peter,(01 =m . 

The evidence EB2 B(Peter's alibi) gives mB2 B: 

                         EB2 B:     },{ MaryPaulk =Ω∈ , Ω=ℜ 22   

                                   .1}),({2 =MaryPaulm  

Conditioning mB01 B on EB2 B leads to mB012 B: 
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                         EB012B :   EB01 B and EB2B,  Ω=ℜ 2012  

                                    5.0})Mary({012 =m , 5.0){Paul}(012 =m .                    

 The basic belief mass that was given to {Peter or Paul} is transferred to {Paul}. My bet 

on female versus male would be 1 to 1, as before obtaining the evidence E B2 B. 

4.1.3. The Bayesian analysis 

In the Bayesian approach, my degrees of belief are quantified by probability distributions and 

all pieces of evidence are incorporated through the Bayesian conditioning processes. A 

probability distribution PB1 B on Ω = {Peter, Paul, Mary} corresponding to E B1 B is: 

5.0}){(1 =∈ MarykP , 5.0}),{(1 =∈ PaulPeterkP . 

My bet on female versus male would also be 1 to 1. 

After learning the evidence EB2B, I would compute PB12 B as: 

xPaulkPMarykP
MarykPPaulMarykMarykPMarykP

+
=

∈+∈
∈

=∈∈=∈
5.0

5.0
}){(}){(

}){(}),{|}{(}){(
11

1
112 , 

where x denotes an unknown probability }).{(1 PaulkP ∈  The application of either the 

insufficient reason principle or a symmetry argument or a minimum entropy argument leads 

to x = 0.25. Although this is the most natural assumption, any other value from the interval [0, 

.5] can be taken in consideration. Such value would correspond to some a priori probability on 

Peter versus Paul, the piece of the information, which is not supported by any of the available 

pieces of evidence. 

4.2. The meaning of the failure probability in a (simple) geotechnical 
design problem 
 
Using a simple geotechnical design problem Oberguggenberger [8] showed that the failure 

probability may depend in an extremely sensitive way on the choice of distribution function. 

They concluded that in such case the failure probability has no meaning as a frequency of 

failure. They suggest more robust alternatives, as interval probability or fuzzy sets. The work 
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unambiguously exemplifies the power of these alternatives, and it is summarized in this 

section.  

4.2.1. The probabilistic safety concept 

Let R and S are two groups of random variables, R a group of all variables describing the 

resistance of investigated structure, while S a group of variables describing the loads. An 

engineering model provides the limit state function g(R,S) whose negative values indicate the 

failure. Knowing the probability distributions of R and S, we can compute the failure 

probability 

)0),(( <= SRgPp f . 

However, in practice, using the current codes the designing engineer has to verify a relation of 

the type 

kSRk SR γγ ≥/ , 

 where  RBk B and SBk B denote certain percentiles of R and S (critical values) and γBR B and γBS B are 

partial safety factors, which are usually in the codes prescribed. 

4.2.2. Fitting probability distributions to a soil parameter  
 
The characteristic value of a soil parameter is the shear strength of the soil ϕστ tan+= cf , 

where c denotes the cohesion and σ the normal stress. Oberguggenberger [8] analyzed 

distribution of the measured friction coefficient ϕυ tan= . Angles φ were obtained from twenty 

direct shear tests. They tested reliability of four distributions: normal distribution, lognormal 

distribution with two parameters, lognormal distribution with three parameters, and triangular 

distribution. As can be seen from Fig. 5A, the former two distributions do not mimic the peak 

asymmetry. A better fit is achieved by the later two distributions (Fig. 5B). All four fitted 

distributions were tested by means of the Kolmogorov-Smirnov test and of χ P

2
P test. The 

goodness of fit was found reasonable in all cases.  
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Fig. 5. Fitting probability density functions to friction angle data. A: normal and two 
parameter lognormal distribution; B:  three parameter lognormal and triangular 
distribution. Adopted from [8]. 
 

4.2.3. A centrically loaded square footing 
 
As an example, Oberguggenberger [8] investigated a problem of centrically loaded square 

footing (Fig. 6).  

 
Fig. 6.  A centrically loaded square footing. Adopted from [8]. 

 
They performed a series of numerical simulations. In each simulation, they calculated N 

independent realizations of the friction coefficient ϕν tan=  and of the load S.  The 

characteristic load Sdfk QS γ/,=  was interpreted as 95%-percentile of a normally distributed 

load, i.e. SNSk kS σμ += . For each realization of the friction coefficient ν, there was 

calculated corresponding realization of the resistance R [8, Eq. 3].  The histograms of  z= r−s 
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for four considered distributions are shown in Fig. 7. The failure probability pBf B was estimated 

from the relative frequency of failure events Z<0, i.e. NHp ff /≈  , where HBfB denotes the  

 

Fig. 7.  Simulated histograms of z=r-s for A: normal distribution; B: two parameter 
lognormal distribution; C: three parameter lognormal distribution; D: triangular 
distribution. Adopted from [8]. 

 

number of failure events. The estimated failure probabilities vary in between 10P

−3
P and 10P

−11
P 

for different distributions, (Tab. 1).  Such huge variations of several orders of magnitude were 

confirmed by analytical computations. The failure probability is highly sensitive to the shape 

of distribution, it is not a robust measure. 

Table 1. Failure probabilities pBfB in m simulations with N realizations. Adopted from [8]. 
Distribution pBfB N  m 
Normal 0.81 × 10P

−3
P
 10P

8
P
 4 

Two parameter lognormal 1.1 × 10P

−4
P
 10P

8
P
 4 

Three parameter lognormal  1.0 × 10P

−9
P
 10P

11
P
 5 

Triangular 1.0 × 10P

−11
P
 10P

11
P
 9 

4.2.4. Robust alternatives 

Oberguggenberger [8] provided following three alternatives. 

4.2.4.A Set of probability measures 
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Oberguggenberger [8] calculated the lower and upper failure probabilities considering all 

probability distributions that could feasibly produce the data in the interval ]30,20[],[ oo=ϕϕ . 

They obtained: 

0))((]}32,20[:))((inf{ =>=∈<= ϕϕϕ f
oo

ff QSPSQPp , 

00235.0))((]}32,20[:))((sup{ =>=∈<= ϕϕϕ f
oo

ff QSPSQPp . 

Less conservative estimates would be obtained by restricting the set of admitted distributions. 

4.2.4.B Random sets 
 
The parameters of the probability distributions were considered to be random. The 

randomness was modeled by means of random sets. As a probabilistic modeling approach 

would just transfer the difficulties with the choice of type of distribution to the second level.  

The load was assumed normally distributed. It was postulated, that the friction coefficient ν 

has a normal distribution. This assumption was applied to make easy the calculation of 

confidence intervals [ ]
ki qq ll , , which were calculated via  

n
st

l q
q

νυ −=  , 

where 74.4=υ  is the sample mean value, tBqB the q.100%-percentile of t-distribution, 

0452.0=νs  the sample standard deviation, and n=20 the sample size. Obtained confidence 

intervals are displayed in Fig. 8. 

 

Fig. 8. Confidence intervals for νμ . Adopted from [8]. 
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 This enables to construct 10 focal sets ABi B, each with the basic probability weight mBi B = 0.1 

(Tab. 2). Finally, each ABi B was mapped into a corresponding interval 

}]:)(sup{},:)([inf{ ififi ApApB ∈∈= νννν μμμμ of failure probabilities (Tab. 2). 

Plausibilities of the events l≥νμ  and pp f ≤ are shown in Fig. 9. 

Table 2. Focal sets. Adopted from [8]. 
Weight ABi B BBi B  
0.1 (−∞, 0.461] [0.00205, 1] 
0.1 (0.461, 0.466] [0.00150, 0.00205) 
0.1 (0.466, 0.469] [0.00119, 0.00150) 
0.1 (0.469, 0.472] [0.00098, 0.00119) 
0.1 (0.472, 0.475] [0.00081, 0.00098) 
0.1 (0.475, 0.477] [0.00067, 0.00081) 
0.1 (0.477, 0.480] [0.00055, 0.00067) 
0.1 (0.480, 0.483] [0.00043, 0.00055) 
0.1 (0.483, 0.488] [0.00030, 0.00043) 
0.1 (0.488,∞] [0, 0.00030) 

 

 

Fig. 9. Plausibility of A: event l≥νμ ; B: event pp f ≤ . Adopted from [8]. 
 

4.2.4.C Fuzzy sets 
 
The fuzzy set describing randomness of ν can be constructed using an expert’s risk 

assessment of possible ranges of the angle φ. The experts were asked to determine I) the range 

of ν which has the degree of possibility α = 0.5; and II) the value ν which has the possibility α 

= 1.  Fig. 10A. shows resulting triangular fuzzy number. The fuzzy set describing the 

resistance was computed by applying the rules of fuzzy set theory and is depicted in Fig. 10B. 
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Fig. 10. A: Constructed triangular fuzzy number for ν=tan φ. B: Computed fuzzy number for 
the resistance R. Adopted from [8].  
 
 
5. Discussion 

PA often requires the investigation of the consequence of rare event for which only few data 

are available. The application of the probability model of uncertainty may suffer from lack of 

information. The probabilistic model would become random itself in such case. As the result, 

parameterized families of distributions give raise to sets of probability measures. The basic 

from several approaches to construct a set of parameterized measures was briefly reviewed.  

It turns out that the subjective theories of probability are well suited for this task; in fact, they 

are designed to it. The subjective theories allow for a formalization of vague data as well as 

for a possibility theoretic interpretation of computation results.  The probability of the event is 

replaced by the degree of belief in the particular scenario of the event. 

SWOT Analysis 

•  Strengths: to treat uncertainties of rare event formally, within a mathematical 

structure. 

• Weaknesses: more suitable for qualitative reasoning than for quantitative 

estimation of uncertainty. 

•  Opportunities: the attempt to incorporate suitable subjective probability concepts 

into PA may be considered as the research challenge within PAMINA.   
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• Threats: the numerical simulations may demand for an excessive computation 

effort.  
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