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Foreword 

The work presented in this report was developed within the Integrated Project PAMINA: 
Performance Assessment Methodologies IN Application to Guide the Development of the 
Safety Case. This project is part of the Sixth Framework Programme of the European 
Commission. It brings together 25 organisations from ten European countries and one EC 
Joint Research Centre in order to improve and harmonise methodologies and tools for 
demonstrating the safety of deep geological disposal of long-lived radioactive waste for 
different waste types, repository designs and geological environments. The results will be of 
interest to national waste management organisations, regulators and lay stakeholders. 

The work is organised in four Research and Technology Development Components (RTDCs) 
and one additional component dealing with knowledge management and dissemination of 
knowledge: 

- In RTDC 1 the aim is to evaluate the state of the art of methodologies and approaches 
needed for assessing the safety of deep geological disposal, on the basis of 
comprehensive review of international practice. This work includes the identification of 
any deficiencies in methods and tools.  

- In RTDC 2 the aim is to establish a framework and methodology for the treatment of 
uncertainty during PA and safety case development. Guidance on, and examples of, 
good practice will be provided on the communication and treatment of different types of 
uncertainty, spatial variability, the development of probabilistic safety assessment tools, 
and techniques for sensitivity and uncertainty analysis. 

- In RTDC 3 the aim is to develop methodologies and tools for integrated PA for various 
geological disposal concepts. This work includes the development of PA scenarios, of 
the PA approach to gas migration processes, of the PA approach to radionuclide 
source term modelling, and of safety and performance indicators. 

- In RTDC 4 the aim is to conduct several benchmark exercises on specific processes, in 
which quantitative comparisons are made between approaches that rely on simplifying 
assumptions and models, and those that rely on complex models that take into account 
a more complete process conceptualization in space and time. 

The work presented in this report was performed in the scope of RTDC 2. 

All PAMINA reports can be downloaded from http://www.ip-pamina.eu.  
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1. Introduction 
 
Performance Assessment (PA) is a main component to show the feasibility and safety of High 
Level Radioactive Waste (HLW) repositories. PA uses complex models, usually called system 
models, which integrate several submodels and simulate the behaviour of the system along large 
time periods. PA involves, among other activities, Uncertainty Analysis (UA) and Sensitivity 
Analysis (SA). UA consists in identifying relevant uncertainties (model uncertainties, scenario 
uncertainties and parameter uncertainties) affecting the behaviour of the system and propagating 
them correctly into the output space, in order to characterise appropriately the uncertainty in the 
output variables used to determine if the system is either safe enough or not.  
 
SA helps PA users to study the impact of input uncertainties on output variables. Following 
Saltelli et al. (2000), the main purposes of a sensitivity analysis in the context of modelling, are: 
 

1. To decide whether a model is accurate with respect to the process it models. If, for 
instance, the sensitivity analysis finds that a factor is very influent, while in reality it is not, 
then the model should be changed because it doesn’t describe correctly the process. 
2. To classify the factors starting from the most influent to the least influent.  

 The most influent factors are the ones that most contribute to the variation of the 
output; hence they might require additional research to improve their estimation.   

 On the contrary, the least influent factors (i.e. the ones that are less affecting the 
variation of the output) might eventually be removed from the model or 
considered as deterministic (and fixed to their mean value for instance). 

3. To detect whether there exists some region in the input factors space where the output 
variation is maximum. 
4. To determine the optimal regions of the input factors space to be used in a calibration 
study (i.e. to calibrate a model against field and laboratory data).  
5. To detect the interaction between factors or groups of factors. 
 

In the following, sensitivity analysis will be considered in the context of PA models which, from 
the point of view of mathematics, are models represented by a (possibly complex) 
function : kf IR IR→  which links the input of the model 1( , , )kX X= KX  to its output Y = f(X). 
The function f is evaluated by a numerical code, which may be very time consuming (i.e. several 
hours of CPU time). The input of the model X is considered to be random and, without any loss 
of generality, the output Y is one-dimensional (scalar). In many cases, scalar outputs will evolve 
over time. 
 
SA methods may be divided into three broad types: local methods, screening methods and global 
methods.  
 Local methods focus on the study of the system model behaviour under very specific system 

conditions (the vicinity of an input space point) and are based on the partial derivatives of 
the output with respect to the inputs. Chapter 5 in Saltelli et al. (2000) is dedicated to those 
methods, and new advances based on the SVD method (Singular Value Decomposition) 
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have been recently developed in Marchand (2007). As the local methods are concerned with 
first order sensitivities, when applied to non-linear problems, the results will be valid only 
for small variations (depending on the amplitude of the non-linearity of the model) around a 
specified value of the input. Other references on this topic are Cacuci (2003), Turanyi 
(1990) and Rabitz et al. (1983). We will not discuss about these methods in this report. 

 Screening methods focus on the functional relation between inputs and outputs disregarding 
input parameter distributions. They are used to identify a subset of inputs that controls most 
of the variability of the output. 

 Global methods focus on how the whole input space (taking into account input distributions) 
maps into the output space.  

 
The target of this work is to provide a summary of most useful methods to perform SA in the 
context of a PA and to provide some advise about their use. In this context, though local 
methods, screening methods and global methods provide relevant information about the system 
model, screening methods and global methods fit better within the structure of a PA, and that is 
the reason to focus all efforts on them. In order to illustrate the use and peculiarities of some 
specific techniques, a couple of simplified PA models will be used extensively along the whole 
text. When deemed necessary, well-known mathematical functions and examples from other 
areas of nuclear safety will be used. Additionally, some examples coming from applications 
developed within other tasks performed under PAMINA will also be used. 
 

2. Notation 
 
rv : random variable; iid : independent, identically distributed (for random variables) 
X, Y :   random variables;  

),...,,( 21 nXXX  : a random sample ;  

),...,,( )()2()1( nXXX  : a random ordered sample ;  
),...,,( ][]2[]1[ nXXX  : a random re-ordered sample according to another variable;  

),...,,( 21 nxxx :  the corresponding realization of the random sample;  

),...,,( )()2()1( nxxx :  the corresponding ordered realization of the random sample; 
),...,,( ][]2[]1[ nxxx :  the corresponding re-ordered sample according to another variable; 

1( , , )kX X= KX  : a random vector of size k (generally representing the input of the 
numerical model) ; 

1( , , )kx x= Kx  : a realization of a random vector of size k ; 

Y = f(X) : the output of the numerical model   : kf IR IR→  
y = f )(x : the output of the numerical model for the sample  
μ : mean of a random variable; E(X) : mathematical expectation of the rv X; 

2σ : variance of a random variable; Var(X), V(X) : variance of the rv X; 
x : sample mean; 
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2
xσ , 2s : sample variance; xσ , s : sample standard deviation; 

3. Factors and interactions 
 
In general, the model studied is a function of the input parameters, Y = f(X). Each component of 
the vector 1( , , )kX X= KX  is called (input) parameter, main effect or (input) factor. The target 
of SA techniques is to identify which factors are important. Nevertheless, as it was said in the 
introduction, the function Y = f(X) may be very complex. The effect of a single factor may be 
very complex. A model may depend only on one factor but that dependence could have a very 
complex structure, which would make difficult the study of such a model. Additionally, models 
may have and may not have interactions. We say that two parameters or factors do not interact 
when the effect of increasing one of them a given quantity does not depend on the values that the 
other actually takes. If the effect of increasing one of the parameters does depend on the value of 
the second parameter, then both factors do interact. In order to understand this concept more 
easily, let us consider the following two models whose support is the square [0,1]×[0,1] 
 

 1 20.2y x x= +                                                                 (3.1) 
and 

1 2 1 20.2 2y x x x x= + + .                                                   (3.2) 
 

Both are plotted in figures 3.1 and 3.2. As it can be seen, in the first model, the effect of 
increasing 2x in one unit is increasing y  in one unit, independently of the value of 1x , while in 
the second model the increase of the output is one unit when 1x  takes value 0 and three units 
when 1x  takes value 1. When performing SA studies, it is important to identify important factors 
and to estimate the single effect of each factor, but it is also very important to identify important 
interactions between factors. The interaction shown in this example is a second order interaction 
because involves only two input factors, but a model that contains k input factors may contain 
interactions up to order k. Section 5.3.1 contains the High Dimensional Model Representation 
(HDMR) of any integrable function, which introduces in a more formal (mathematical) way the 
concept of factor and interaction of any order. 
 

Figure 3.1.- Mathematical model with two input 
parameters with no interaction 

Figure 3.2.- Mathematical model with two input 
parameters with interaction 
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4. Screening methods 
 
Screening methods proceed from the field of design of experiments, which was originally 
developed by statisticians working in the area of agriculture improvement and industrial 
processes, in both cases to optimise production. Typically they were applied to problems that 
involved from a few input factors to a few tens. Screening methods are widely used because 
whenever we deal with problems involving a large number of inputs it is quite reasonable to 
think that only a few of them are really influent. This is known as the principle of parsimony or 
Occam’s razor. Recently, its use has been promoted in the area of SA of computer codes, 
extending their application to models that have many input parameters.  
 
In the next pages we develop the following screening methods: full factorial design, fractional 
factorial design, Morris’ OAT design, and sequential bifurcation. 
 

4.1. Full factorial designs 
 
In many studies developed to find the most important input factors or input parameters in a 
computer code, the approach used by researchers was the ‘one at a time approach’ (OAT). Usually, 
in this type of study, a reference point is considered, usually in the middle of the range of variation 
of the input factors involved, and one by one, the value of each parameter is changed, getting the 
value of the output variable of interest for each case. This way, the impact of each input factor may 
be estimated. Nevertheless, long ago, see Box and Draper (1987) and Box et al. (1978), this method 
was shown to be inefficient from two points of view, firstly because interactions are ignored and 
secondly because estimation errors are larger (this second issue is only important in the case of real 
experimentation, where experimental variability plays an important role, not being a matter of 
concern in the case of computer experiments).  
 
The theory of two level factorial experiments (2k designs) was developed in the late 1950’s and 
early 1960’s and was further improved with the introduction of fractions (2k-p designs). Though it 
got its maturity in the late 1980’s, it is still nowadays a fertile area of research in Statistics. In a 2k 
design of experiments we consider that our computer model has k parameters and we are interested 
in studying its behaviour at two different levels. Those levels are called lower and upper level, or 
levels –1 and +1 respectively. In principle, those levels may be either quantitative or qualitative. In a 
numeric continuous parameter, levels –1 and +1 could represent the minimum and the maximum 
values in its range; in a qualitative parameter it could be, for example, the use of two different 
competing available submodels to simulate a given physicals or chemical phenomenon. Let us 
consider a computer model with only three parameters A, B and C. In order to study it, we will 
assume the following structure 
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where μ is the mean of the output variable and X1, X2 and X3 represent respectively factors A, B and 
C and take values –1 when the factor is in its lower level and +1 when the factor is in its upper level. 
This model is completely general, its validity is restricted to the aforementioned values of the 
different parameters (-1 and +1) and has eight parameters: μ, a,…,(abc). The parameters in 
parentheses do not represent products; (ab) is the parameter associated to the interaction between 
factors A and B, not the product of a and b. Parameter (ab) accounts for the different impact of 
factor A depending on the level of factor B and vice versa. Consequently, we need at least eight 
runs of the computer code to be able to estimate all the parameters. The selection of the eight 
needed runs is done according to Table 4.1.1, crossing in all possible ways (8) the levels of the three 
factors. Columns headed by two or three letters are associated to the corresponding interactions and 
their elements (-1 or +1) are computed by multiplying the corresponding values in the columns 
headed by A, B and C. The last column represents the results obtained when running the code, so 
y+1+1-1 is the value of the output variable obtained when running the code after setting factors A and 
B in their lower levels and factor C in its upper level. Figure 4.1.1 shows in a 3-D plot the points 
selected in a 23 full design. 
 

Table 4.1.1.- 23 complete design 
I A B C AB AC BC ABC Y 

+1 -1 -1 -1 +1 +1 +1 -1 y-1-1-1 
+1 +1 -1 -1 -1 -1 +1 +1 y+1-1-1 
+1 -1 +1 -1 -1 +1 -1 +1 y-1+1-1 
+1 +1 +1 -1 +1 -1 -1 -1 y+1+1-1 
+1 -1 -1 +1 +1 -1 -1 +1 y-1-1+1 
+1 +1 -1 +1 -1 +1 -1 -1 y+1-1+1 
+1 -1 +1 +1 -1 -1 +1 -1 y-1+1+1 
+1 +1 +1 +1 +1 +1 +1 +1 y+1+1+1 

 
 

In order to estimate any parameter of the statistical model we will use the following scalar product 
 

YV T
i2/

1ˆ
ki =θ                                                               (4.1.2) 

 
where Vi stands for the vector shown in Table 4.1.1 corresponding to factor or interaction i, Y 
stands for the vector of the output variable values and T stands for transpose vector. Applying 
equation 4.1.2 to estimate the impact on the output of moving from the lower to the upper level of 
factor C, we see that it is the average of the four output values that have their third subindex set to 
+1 less the average of the four output values that have their third subindex set to –1 (the average of 
the last four values less the average of the four first values). Equation 4.1.2 and table 4.1.1 allow us 
to know how to estimate the effect of factors and interactions. The mean is estimated, when needed, 
using the column of values under I and using k instead of k/2 in the denominator of equation 4.1.2.  
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Two methods are available to decide if the impact of a factor or of an interaction is relevant 
(statistically significant): The Mean Absolute Deviation (MAD), see Peña and Juan (1992), and the 
Analysis of Variance (ANOVA), see Box and Draper (1987). ANOVA is used when the number of 
factors and interactions in the statistical model is larger than the number of observations. Otherwise 
the MAD is used. Nevertheless, these tests are based on the fact that data come from experiments 
affected by random perturbations, which is not the case when working with computer models. The 
authors of this document consider that the results of such tests, when the data analysed have been 
obtained from computer codes, should be taken as indications, rather than as real statistical tests. 
This is due to the fact that the conditions under which those tests were developed are seriously 
violated (there is no experimental variability). 
 

 
Figure 4.1.1.- Selection of design points in a 23 full factorial design 

 
 

The main problem associated to 2k experiments is the large number of computer runs demanded 
when the number of input factors increases. Just think that we will need 210 runs to analyse a ten-
factor model. The theory of fractional factorial two level designs was developed to cope with this 
problem.   
 

4.2. Fractional factorial design 
 
A fraction of a design is a part of the runs considered in a complete 2k design that fulfils some 
specific conditions. We also call it 2k-p design. In this case we assume that most of the high order 
interactions are not relevant and we can dedicate the output variables to estimate the effect of factors 
and low order interactions, mainly second order interactions.  For example, in Table 4.1.1 we could 
consider only the runs where ABC takes value +1. We represent this fact by 
 

ABCI =                                                                              (4.2.1) 
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because we have chosen the runs that have value +1 simultaneously in columns I and ABC, and we 
call it the generator of the fraction. This (half) fraction is shown in Table 4.2.1. Figure 4.2.1.a shows 
graphically what points are considered in the sample. This fraction is called half-fraction because 
half of the design points are kept.  
 
 Table 4.2.1.- 23-1 design with generator I=ABC. 

I A B C AB AC BC ABC Y 
+1 +1 -1 -1 -1 -1 +1 +1 y+1-1-1 
+1 -1 +1 -1 -1 +1 -1 +1 y-1+1-1 
+1 -1 -1 +1 +1 -1 -1 +1 y-1-1+1 
+1 +1 +1 +1 +1 +1 +1 +1 y+1+1+1 

 

 

In Table 4.2.1 we can see that columns under A and BC are identical, and the same happens with B 
and AC, and with C and AB. This means that, when applying equation 4.1.2 to estimate the 
different factors in equation 4.1.1, the estimators, and hence the estimates, for A and BC will be 
equal, as will be for B and AC, and for C and AB. In these cases we say that those effects are 
aliased and we are not able to distinguish them from this design of experiments.  Figure 4.2.1.b 
shows graphically the design points used when the half-fraction defined by the generator I=-ABC is 
considered. 
 
 

 
Figure 4.2.1.a- Half fraction (23-1) defined by 
generator I=ABC 

Figure 4.2.1.b.- Half fraction (23-1) defined by 
generator I=-ABC 

 
 
The three main ideas on which the construction of these designs are based are: 
 the sparsity of effects principle (when there are many inputs, the output is likely to depend 

significantly only on few main and low-order interaction effects) 
 the projection property (they can be projected into larger designs in the subset of significant 

factors) 
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 sequential experimentation (two or more fractional design can be combined into a larger 
design, getting information about the system in a sequential manner, up to the point when no 
more relevant information is expected). 

 
 
The main references on the sections concerning factorial designs are Box and Draper (1987), and 
Myers and Montgomery (2002). For specific utilisation in the SA context, see also Saltelli et al. 
(2008) or Saltelli et al. (2000). Additional important concepts not dealt with in the previous 
pages, as for example the resolution of a design, are further explained in these references. 
 

4.2.1. Example of application of a fractional factorial design 
 
A fractional factorial design is used to identify, under given accident conditions in an advanced 
nuclear reactor, what factors affect more the increase of temperature in the hottest fuel bar (clad 
temperature), which is the output variable. Seven factors are considered in the study, which are 
coded as A, B, C, D, E, F and G.  Conditional on the expensive cost of each run in terms of 
computational time (the computer code used is the Computational Fluid Dynamics -CFD- code 
CFX10, which takes approximately half a day per run), we decided to start the analysis with a 
saturated 27-4 design (a saturated design is created by accommodating one new factor per column 
of interactions in an original full factorial design). This design allows studying the effect of 
seven parameters with only 8 runs. The order of the input parameters was not selected at random. 
In principle, the a priori most important parameters are in the first positions, while the a priori 
less important are in the last positions. 
 
Table 4.2.1.1 provides the saturated design selected for this first experiment and the results 
obtained after running the code. For creating this design, we have taken a 23 design as a starting 
point for A, B and C, which will be saturated to produce a one-sixteenth replicate of a 27 design 
(it is called one-sixteenth because only one-sixteenth of the points in the 27 design are kept). This 
design is created by using column AB for accommodating factor D, column AC for E, BC for G 
and ABC for F, in such a way that the generators of this saturated fraction will be 

 
 

ABCFBCGACEABDI ====    .                                            (4.2.1.1) 
 
By multiplying these generators in all possible ways, we get the complete set of generators that 
defines this 27-4 design. The result is  

 
 

ABCEFG
CEFGBDFGADEFDEG

AFGBEFABEGCDFACDG
BCDEABCFBCGACEABDI

=
=====

======
======

   
   
                                        (4.2.1.2) 
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The alias structure is computed by multiplying the full set of generators by the different main factors 
and interactions. In this first step we are far more interested in main factors than in interactions. In 
the following lines we show the alias structure of main factors, considering only interactions up to 
order 2 

 

AFDEBCG
AGBECDF

BFDGACE
CFEGABD

DFBGAEC
EFCGADB

FGCEBDA

+++→
+++→

+++→
+++→

+++→
+++→

+++→

g
f

e
d

c
b

a

ˆ

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

                                                    (4.2.1.3) 

 
So, for example, when estimating the effect of factor E, the estimation will be contaminated by the 
effect of interactions AC, DG and BF, while when estimating factor A, its estimation will be 
contaminated by the effect of interactions BD, CE and FG. 
 
Table 4.2.1.1.- 27-4 saturated design corresponding to generators given in equation 4.2.1.1. 

I A B C D=AB E=AC G=BC F=ABC Y 
+1 -1 -1 -1 +1 +1 +1 -1 1768 
+1 +1 -1 -1 -1 -1 +1 +1 1033 
+1 -1 +1 -1 -1 +1 -1 +1 1715 
+1 +1 +1 -1 +1 -1 -1 -1 1013 
+1 -1 -1 +1 +1 -1 -1 +1 1826 
+1 +1 -1 +1 -1 +1 -1 -1 1045 
+1 -1 +1 +1 -1 -1 +1 -1 1781 
+1 +1 +1 +1 +1 +1 +1 +1 1003 

 
 
The estimates of the statistical model considered are  
 

3.5   ˆ
7.5  ˆ

*       30.5-   ê
9    d̂

*      31.5   ĉ
*         40-   ˆ
#         749- ˆ

+=
−=

=
+=

+=
=

=

g
f

b

a

                                                       (4.2.1.4) 

 
The meaning of these results is that, when moving A from its lower level to its upper level, on 
average, Y decreases 749 K. In the case of B, Y decreases 40 K. The same change in C produces an 
average increase of 31.5 K in Y and so on. We can see that there are three sets of results, -749 (A), 
those whose absolute value is around 35 (B, C and E) and the rest (D, F and G). When applying the 
MAD method to determine which factors are relevant, we identify only A (#). Nevertheless, we 
should also pay attention to B, C and E, since changes of approximately 35 degrees in Y are 
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certainly significant from a physical point of view. The problem we are facing now is how to 
proceed to get more information from our computer model. From equation 4.2.1.3 we know that 
these estimates are aliased with second and higher order interactions and we do not know which of 
them are responsible for the estimates obtained, or if all of them are equally responsible. In most of 
the models, factors are more important than second order interactions and these are more important 
than third order interactions and so on. So, in principle, these results are telling us that the most 
important factor, by far, is A, followed by B, C and E. Certainly, the inclusion of E among the most 
influent factors on Y is a surprise. We did not expect this input parameter to be an important one. In 
order to detect if E is really important or if the estimate of its effect is due to interactions AC, DG or 
BF, and also to look for confirmation about the importance of the other three factors, we will take 
another saturated 27-4 design. In order to make estimable all factors, with no alias with second order 
interactions, we will take the following generators 

 
ABCFBCGACEABDI =−=−=−=                                                (4.2.1.5) 

 
The design points corresponding to this new fraction and the results obtained are shown in Table 
4.2.1.2. Both fractions together will be used as a new joint design to continue the study. This means 
putting together all the information contained in Tables 4.2.1.1 and 4.2.1.2. A peculiarity of this new 
design is that, in addition to allowing estimating all main factors with no alias with second order 
interactions, it is a full 24 design in A, B, C and any of the other four factors excluding F. The full 
set of generators of this joint design is 

 

BDFGCEFGADEFCDEG 
ABCFABEGBCDEI

====
===

  
                                              (4.2.1.6) 

 
where the three first are the original set of generators used to build up the design. 
 
 Table 4.2.1.2.- 27-4 saturated design corresponding to generators given in equation 4.2.1.5. 

I A B C D=-AB E=-AC G=-BC F=ABC Y 
+1 -1 -1 -1 -1 -1 -1 -1 1768 
+1 +1 -1 -1 +1 +1 -1 +1 1038 
+1 -1 +1 -1 +1 -1 +1 +1 1701 
+1 +1 +1 -1 -1 +1 +1 -1 1009 
+1 -1 -1 +1 -1 +1 +1 +1 1824 
+1 +1 -1 +1 +1 -1 +1 -1 1038 
+1 -1 +1 +1 +1 +1 -1 -1 1783 
+1 +1 +1 +1 -1 -1 -1 +1 1010 

 
 

The results of this design are summarised in Table 4.2.1.3. In the first column we represent the 
factors, in the second one the sum of squares or part of the total variability of the output variable 
explained by each factor, in the third one the P-value of the associated F-test and in the fourth 
column the estimate of the effect of each factor. No interaction is shown in the table because all 
second order interactions are aliased with other second order interactions. The column under the 
heading P-value indicates if the factor produces a statistically significant effect (values under 0.05). 
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The closer the P-value is to 1.0, the less important that factor is and the closer it is to 0, the more 
important it is. In an ANOVA table, the way to decide if a factor is statistically significant is to 
compare the variability it is able to explain with the residual variability.    
 
Table 4.2.1.3.- Results, for A, B, C, D, E, F and G, of the design obtained by joining the two saturated 
designs in Tables 4.2.1.1 and 4.2.1.2. 

Source Sum of squares P-value Estimate 
A 2.23 E+06 0.00 *                      -747.125 
B 6601 0.01 *                        -40.625 
C 4389 0.03 *                          33.125
D 14 0.88 -1.875
E 14 0.88 1.875
F 189 0.58 -6.875
G 105 0.68 5.125

Residual 4614
 
 
From this table we can get two straightforward conclusions: 1) D, E, F and G are completely 
irrelevant factors, especially D and E and 2) comparing these results with the results in 4.2.1.4, since 
E has been shown to be irrelevant, some of the interactions AC, DG or BF could have some 
relevance, and could be responsible for the estimate obtained in 4.2.1.4. In principle, non-relevant 
factors only rarely could have important interactions, this fact bring us to consider DG a very 
unlikely interaction. Regarding BF, it could also be considered unlikely. So, the main candidate to 
be responsible for the non-expected result obtained in 4.2.1.4 is AC. This rationale brings us to 
consider as a likely statistical model to explain the sampled results obtained with our computer code 
a model with only A, B and C as main factors, plus all their interactions, formally a model exactly 
the same as in equation 4.1.1. Studying this model doesn’t demand to get new computer runs. Table 
4.2.1.4 is the ANOVA table of such a study.  
 

Table 4.2.1.4.- Results, for A, B, C and all their interactions, of the design obtained by joining 
the two saturated designs in Tables 4.2.1.1 and 4.2.1.2. 

Source Sum of squares P-value Estimate 
A 2.23 E+06 0.00 *                      -747.125 
B 6601 0.00 *                        -40.625 
C 4389 0.00 *                          33.125 
AB 473 0.00 *                            10.875 
AC 4193 0.00 *                          -32.375 
BC 11 0.50                                 1.625 
ABC 189 0.02 *                             -6.875 
Residual 171   
 
 
The results in Table 4.2.1.4 may be summarised as follows: 1) All main factors considered in this 
model (A, B and C) and their interactions are statistically significant, with the exception of BC, and 
2) the residual variability is really tiny, only 171 (171+11 if we exclude BC and add the variability 
explained by this factor to the residual variability), which is less than 5% of the residual variability 
obtained with the previous model. This reduction in non-explained variability means that with only 
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A, B and C and their interactions we are able to explain much more data variability. So, the 
statistical model selected in this study to explain the physical model data would be the one provided 
in equation 4.1.1 with the estimates provided in Table 4.2.1.4. This means that the main factor in 
this model is A, followed by B and C. The impact of B and C on the output Y is one order of 
magnitude smaller than A’s. The interaction between A and C has shown to be almost as strong as 
main factors B and C. The only third order interaction is significant, though from a physical point of 
view it cannot be considered relevant given its impact on the output (its effect is less than one third 
the effect of any of the relevant second order interactions).   
 
This example shows that fractional factorial experiments are very well suited to develop sequential 
experiments, where new design points are selected according to the information obtained in 
previous steps. Seven factors have been studied using only 16 computer runs, identifying three 
factors and two second order interactions as relevant. In our opinion, this strategy is adequate when 
the number of input factors is moderate, but it may become very difficult to implement when the 
number of input factors is large (several tens or larger). In those cases, more automatic and efficient 
methods should be used, as for example the methods that will be explained in sections 4.3 and 4.4. 

 

4.3. Morris’ one-at-a-time (OAT) design 
 
Morris (1991) thought that, for any model output Y differentiable at least once with respect to 
each input, Y’s partial derivative with respect to Xi at a given point x of Y’s support is a measure 
of the influence of Xi on Y. This way, Morris considers that if the partial derivative is 

1. 0 over all values of x. Then Xi’s effect on Y is negligible. 
2. a non-zero constant over all values of x. Then Xi’s effect on Y is linear and additive. 
3. a non-constant function of only Xi. Then Xi’s effect on Y is non-linear. 
4. a non-constant function of one or more Xj (j≠i). Then Xi’s effect on Y involves 

interactions with other input factors. 
 
Morris considers that the target of a moderate-cost experimental design should be to provide 
information to classify input factors in three sets: 

1. factors that have negligible effect on the output  
2. factors that have linear effects without interactions 
3. factors that have non-linear effects and/or interactions . 

 
In order to get this target, the author proposes to normalise the input space to the unit k-
dimensional hypercube ([0,1]×… ×[0,1]) and create a p-level grid in this hypercube (each input 
Xi is allowed to take values in the set {0,1/(p-1),2/(p-1),…,1}). The elementary effect of a given 
input factor Xi at a given point x within the unit hypercube is defined as  
 

1 1 1( , , , , , , ) ( )( ) i i i k
i

y x x x x x yD − ++ Δ −
=

Δ
K K xx                                     (4.3.1) 
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where xi≤1-Δ and Δ is a multiple of 1/(p-1). Under these circumstances, the number of 
elementary computable effects within the unit hypercube for each input factor is pk-1[p-Δ(p-1)], 
which follows a given discrete probability density function. A large measure of central tendency 
(mean) of the distribution corresponding to input factor Xi means that this factor has an 
important influence on Y. A large measure of spread (standard deviation) shows that either 
interacts strongly with other factors or its impact on the output is not linear, or both. In next 
section we describe the sampling plan designed by Morris to estimate both measures in an 
efficient manner. 
 

4.3.1. The implementation of the method 
 
Morris proposed to create random sample paths along a grid like the one mentioned in last 
section to compute the distribution of elementary effects for each input factor. In order to get 
those random sampling paths, the following matrices and vectors are created 

1. the (k+1)×k matrix B, which contains one zero followed by k ones in the first column, 
two zeros followed by k-1 ones  

2. the k×k diagonal matrix D* that takes values either –1 or +1 as diagonal elements with 
probability 0.5 each. 

3. the (k+1)×k matrix Jk+1,k of ones (all its elements are 1), and the column matrix Jk+1,1 (all 
its elements are 1) 

4. the k×k random permutation matrix P*, whose columns contain all one  
5. the random vector (k components, one per input factor) x*, whose components are taken 

at random from the set {0, 1/(p-1),2/(p-1),…,1-Δ}, each with equal probability.  
 
Additionally, Morris suggests to restrict the application of the method to Δ=p/[2(p-1)], p taking 
an even value. This way, the matrix B*=(Jk+1,1x*+(Δ/2)[(2B- Jk+1,k)D*+ Jk+1,k])P* is created. This 
is a (k+1)×k matrix, which is called by Morris a random orientation of matrix B and defines k+1 
points in the grid (each row of B* is a point). Each point is created from the previous one adding 
a quantity +Δ or -Δ to only one of its components. This way, comparing the k+1th row with the 
first one, their components will be the ones of the first row plus or less Δ. These k+1 points are 
used to estimate one elementary effect per input factor; k in total. 
 
Let us consider a specific case to see how a random orientation is created. Let us consider k=3, 
p=6 and Δ=p/[2(p-1)]=2/5. Under these circumstances 
 

2
5

2 2
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0 0 0 0 0 0 1 1 1
1 0 0 0 1 0

1 0 0 0 0 1 1 1
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0 1 1
1 1 1

(1 2)[(2 ) ]
1 0 1
1 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟− + =
⎜ ⎟
⎜ ⎟
⎝ ⎠

*
k+1,k k+1,kB J D J ,                                  (4.3.1.2) 

 
 

As can be seen, each column of matrix (1 2)[(2 ) ]− +*
k+1,k k+1,kB J D J  is the same as the 

corresponding one of B or the same one substituting zeros by ones and vice versa. Observe that, 
while B, ΔB and J4,3 are fixed after setting k, p and Δ, D* and P* are the result of sampling and 
could take different values in different applications (for k=3, there are 8 -23- different 
possibilities for D* each one with probability 1/8 and 6 possibilities -3!- for P* each one with 
probability 1/6). Let us suppose that after sampling according to bullet 5, the vector 
x*T=(3/5,1/5,0) is obtained (T stands for transpose). Then B* becomes 
 

3 1 2 2
5 5 5 5

3 1 2 2 2
5 5 5 5 5

3 1 2 2
5 5 5 5

3 1 2
5 5 5

0 0
0 1 0

0
( ( 2)[(2 ) ]) 1 0 0

0 0
0 0 1
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          = 1 0 0
1
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. (4.3.1.3) 

 
The first 4×3 matrix within brackets on the right hand side is the result of Jk+1,1x*. It provides the 
starting point for selecting a sample path in input space (orientation). The second 4×3 matrix 
within brackets on the right hand side is the result of ( 2)[(2 ) ]Δ − +*

k+1,k k+1,kB J D J , which sets 
what component of the vector in the input space we have to modify (adding or subtracting a 
quantity Δ=p/[2(p-1)]=2/5) to get the next sample point. Adding both first rows, we get the first 
point in the sample path: (3/5,3/5,0). Successive rows in the second matrix within brackets 
indicate that the second point is obtained by adding 2/5 to the first component of the first point, 
the third point is obtained by subtracting 2/5 to the second component of the second point and 
the last one is obtained by subtracting 2/5 to the third component of the third point. Multiplying 
by P* a permutation of columns is obtained, which introduces symmetry in the treatment given to 
all components of the input parameter space (in this example the first and the second components 
are exchanged, remaining the third one unchanged). Finally, Matrix B* becomes 
 



  
 

 
17

3 3 2
5 5 5

3 2
5 5

1 2
5 5

1
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1
1
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*B                                                        (4.3.1.4) 

 
Computing the model output Y for each row of B* and applying expression 4.3.1 an elementary 
effect may be estimated for each input factor. For example, an elementary effect for the third 
input factor is estimated by applying 4.3.1 to the output obtained for the third and fourth rows of 
B*. In order to get an estimation of the whole distribution of elementary effects for each input 
factor, this process must be repeated as many times as considered necessary, for example r times. 
So, the design matrix will be  
   

2

...

r

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

*
1
*

*

B
B

X

B

  .                                                          (4.3.1.4) 

 
 
This way, the total number of code runs or design points is (k+1)×r. 
 
Morris’ design is considered a OAT design because only one factor is changed in two successive 
experiments. Examples of such designs are presented in figure 4.3.1.1:  

• to the left,  d=2, r=5 and p=5; an individual OAT is in this case formed for instance 
by the points A, B, C. 

• to the right, d=3, r=1 and p=1, the only individual OAT design is (A, B, C, D). 
 

    
 

Figure 4.3.1.1.- Example of Morris’ OAT designs in 2 (left) and 3 (right) dimensions 
 
 
If we call },,{ 1 r

ii DD K  to the set of estimates obtained for the elementary effects of factor Xi 
when applying 4.3.1 to the adequate sample points, and use the usual estimators of the mean and 
the standard deviation (the sample mean iD  and the sample standard deviations is ), these 
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estimates may be used as sensitivity estimates. The interpretation of these sensitivity indices is as 
follows:  

• a large measure of the central tendency (i.e. iD ) indicates an input with an important 
overall influence on the output; 

• a large measure of dispersion (i.e. is ) means that there are significantly different 
values in the corresponding elementary effect distribution and consequently the 
dependence of the output on the considered factor is either nonlinear or in interaction 
with other factors (just think that iD  is an approximation of the derivative of Y with 
respect to Xi). 

 
The plot of the means versus the standard deviations of these samples will indicate how to split 
the factors into the three categories mentioned at the beginning of this section: 

• low values of the means  factors with negligible effect on the output. 
• large values of the means and low values of the standard deviations  factors with 

linear effects but without interactions. 
• large values of the means and of the standard deviations  factors with non-linear 

effects and/or interactions. 
 
The main advantage of this screening method is its relatively low computational cost, (k+1)×r 
(linear function of the number of inputs factors), while the main disadvantage that it is not 
possible to estimate individual interactions among factors. Another disadvantage the presents the 
method is the possible lack of importance attributed to input factors whose variation may 
produce large elementary effects positive but also negative. In that case, cancellations made 
during the averaging process of computing a mean can render misleading results.  
 
After the publication of Morris’ original work, several authors have proposed the following 
modifications: 

1. In order to avoid one of the disadvantages just mentioned (cancellation of terms of 
different sign in the estimation of the mean, underestimating the importance of some 
relevant factors), Campolongo et al. (2007) propose to replace the mean of the 
elementary effects by the mean of their absolute values (see also Saltelli et al. (2004)). 

2. Campolongo et al. (2007) propose to use a space filling design (SFD) for choosing the 
starting point for each individual OAT. 

3. Pujol (2008) propose to use a simplex design instead of a OAT design, which has two 
main advantages: 
• better properties in terms of projection on subspaces. 
• possibility to use a pre-existing database of simulations to form the simplex design. 

 

4.3.2. Example of application of Morris’ OAT design 
 
The classical example for this screening method is the Morris analytical function (Morris 
(1991)), which has k = 20 input factors and is defined by: 
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The rest of the first and second order coefficients were generated independently from a normal 
distribution )1,0(Ν and the rest of the third and fourth order coefficients were set to 0. The 
number of levels for each factor is p = 4, and the number of individual OAT designs is r = 4. In 
this case there will be 84421 =× code runs. Using these 84 values of y, a random sample of 4 
elementary effects is observed for each input factor; for each of these random samples the mean 
of the absolute values and the standard deviations are computed. 
 
The plot of the means of the absolute values of the elementary effects versus their standard 
deviations is showed in figure 4.3.2.1, and allows us to separate the factors into the 3 groups:  

• the ones with negligible effect on the output : factors 11 to 20; 
• the ones with linear effects without interactions : factors 8, 9, 10; 
• the ones with non-linear effects and/or interactions :  factors 1,…, 7. 
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Figure 4.3.2.1.-  Results of the Morris’ method applied to Morris’ function, the dotted lines are separators 

for the 3 groups 
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4.4. Sequential bifurcation 
 
This method has been developed in Bettonvil and Kleijnen (1996) and is a group screening 
technique. It allows screening a large number of factors. One of the main advantages is that the 
number of simulations to be performed is smaller than the number of factors to be screened. The 
drawback is that the relationship between each input factor and the output has to be monotonic 
and that the type of monotony has to be known a priori. Whenever this condition is fulfilled, the 
method is very effective. 
 

4.4.1. The method 
 
The method is a group screening one; at each iteration the most influent group is split into two 
subgroups. This is the way the most influent factors are identified. In order to measure the 
influence of each group, the method offers two alternatives: 

1. either the relationship between the inputs and the output is linear, i.e. the following model 
holds 

 
0 1 1 k kY X Xβ β β= + +K                                                (4.4.1.1) 

 
2. or the relationship is linear with interactions, i.e. the following model holds 
 

, 10 1

k k
i ji i ij i ji i j

Y X X Xβ β γ== <
= + +∑ ∑ .                                    (4.4.1.2) 

 
Each factor Xi is uniformly varying on [−1,1]. The signs of the βi coefficients have to be known 
(without any loss of generality, we can suppose that they are positive). 
 
The effect of the group of factors included between the ith factor and the jth factor is denoted by 
eij and is defined as the difference between: 

 the average of the output Y knowing that the factors Xi … Xj have been fixed at the 
value 1 (or the conditional expectation of Y knowing that Xi =1,…, Xj=1) and 

 the average of the output Y knowing that the factors Xi … Xj have been fixed at the 
value −1 (or the conditional expectation of Y knowing that Xi = −1,…, Xj= −1). 

 
This yields: 
 

[ ] [ ] ( )jijijiij XXYEXXYEe ββ ++=−=−=−=== KKK 21,,1|1,,1|      (4.4.1.3) 
 
The way to estimate these effects is slightly different if we use the linear model or the linear with 
interactions model. For the first case (3.4.1) we use: 
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)()( )1()( −−= ijij xfxfe                                                 (4.4.1.4) 

 
and for the second one, (3.4.2), we use: 
 

( ) ( )
2

)()()()( )1()1()()( −− −−−−−
= iijj

ij

xfxfxfxf
e ,                              (4.4.1.5) 

 
where ( )lx denotes the vector where the first l components are set to 1 and the following ones are 
set to – 1.   
 
In order to estimate the effect of one group we need 2 runs for the first type of model, and 4 runs 
for the second type. The procedure being iterative, the total number of simulations may be 
diminished: at every iteration, we split a group for which we have already estimated the effect in 
two subgroups for which we want to estimate the effects. We need then only one supplementary 
run for the linear model and two for the linear with interactions model to perform the estimations 
of the effects of the subgroups. The maximal number of runs is then k+1 for the linear model and 
2k for the linear with interactions model. In practice, this computational cost is even lower, 
because the iterations should stop when all the influent parameters have been found. 
 

4.4.2. Example 
 
This is an analytic example available in the package sensitivity in R. It is a linear model with 
interactions:  
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There are d=50 independent input factors. The coefficients of the model are represented in figure 
4.4.1.1. There are 5 important β coefficients. As for the γ coefficients, they are varying uniformly 
between 0 and 0.1 except for two values: γ12 = 5 and γ59 = 12.  
 
After performing 15 iterations of this method, the 4 largest main effects are identified as the 
variables number 9, 14, 16, 2 (in decreasing order of the corresponding main effects) and the 
group formed by the variables 26 – 38 have the next greatest main effect (by construction, the 
variable number 33 has the next most important main effect). The results for the 1st, 2nd and 15th 
iteration of the method are given in figure 4.4.1.2. The results have been obtained using 
expression 4.4.1.5. 
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Figure 4.4.2.1.- Coefficients of the model (4.4.2.1) 
 
 

group effect group effect group effect
1-50 278.9218 1-25 243.0556 1 0.06655364

26-50 35.8662 2 42.47244855
3-4 0.53272005
5-7 0.98734019

8 0.12394334
9 87.03867644

10 0.42195223
11-13 0.73810447

14 55.61885057
15 0.51008848
16 51.42242299

17-19 1.10861541
20-25 2.01392355
26-38 32.54224589
39-50 3.32395487

iteration 1 iteration 2 iteration 15

Figure 4.4.2.2.- Results for the sequential bifurcation example - to the left the groups of variables 
together with their estimated effects for iteration number 1, 2 and 15; to the right the same results for the 
15th iteration but in a graphical representation. 
 

5. Global methods 
 
Global methods focus on how the whole input space (taking into account input distributions) 
maps into the output space. Four sets of global methods have been considered in this study: 
graphical methods, Monte Carlo based methods, variance decomposition based methods and 
distribution sensitivity methods. In the following pages most interesting techniques are 
described. 
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5.1. Graphical methods 
 
Graphical methods are important tools to support, guide and interpret the results provided by 
numerical sensitivity analysis techniques. They may also be used as standalone techniques to get 
further insights about the model under study. Widely used graphical tools to analyse relations 
between inputs and outputs are scatter-plots and cobweb plots. In this report we also include the 
recently revived and improved Contribution to the Sample Mean Plots (CSM plots). Extensions 
of some of them are also considered. 
 

5.1.1. Scatter-plots 
 
Let us call X=(X1,X2,…,Xk) the vector of input parameters and Y to a given scalar output variable. 
For a given input Xi, the scatter-plot is the projection of the sample points (X,Y) on the (Xi,Y) 
plane. This representation allows the examination of the dependence between Y and Xi. Scatter-
plots are very helpful to identify linear relations, monotonic relations and the existence of 
thresholds among other potential trends. The use of transformations may also provide a lot of 
information about input/output relations. They may be used as supporting material to explain the 
results obtained by means of numeric sensitivity techniques, but also to prevent the use of 
inadequate techniques. The most frequently used transformations are 
 

1. Logarithmic (base 10) 
2. Ranks 

 
Both transformations are useful, though they also have their shortcomings. The logarithmic 
transformation is more intuitive, but may not be used when a fraction of the values (usually 
output values) take value 0, unless the software at hand has been designed to cope with such 
problem and it avoids null values before applying the transformation. The transformation into the 
ranks is not affected by such problem. In this transformation the smallest sample value is 
transformed into 1, the second smallest into 2 and so on until the largest value, which is 
transformed into n (sample size). So, the new scale is between 1 and n. Nevertheless, this 
transformation is not so intuitive (just think that two values separated by several orders of 
magnitude can get contiguous ranks, say h and h+1, the same as two other very close values). In 
case of ties, equal values are assigned the same rank. For example, if three values are equal, and 
should occupy ranks t-1, t and t+1, all of them are assigned rank [(t-1)+t+(t+1)/3]=t. The 
strongest reason to use the rank transformation in SA is that this transformation converts any 
monotonic relation between two variables into a linear one. Table 5.1.1.1 provides an example of 
a transformation into ranks. In many cases, the combined information provided by scatter-plots 
obtained using different transformations will help understanding the set of data under analysis. 
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Table 5.1.1.1.- Sample and corresponding ranks. 
Parameter sample 

Raw values Ranks 
18 2 
96 7 
45 5.5 
31 3 
15 1 
99 8 
45 5.5 
39 4 

 
 
 
Figures 5.1.1.1 to 5.1.1.6 are examples of scatter-plots obtained from the Level_E test case 
described in annex 1 using a simple random sample of size 459. Figures 5.1.1.1 to 5.1.1.3 are the 
scatter-plots for the dose at 104 y versus a composite input parameter (created ah-hoc as a 
function of other input parameters) for the raw values, the logarithms and the ranks respectively. 
Figure 5.1.1.1 hardly allows see anything related to the dependence input-output, except some 
kind of possible monotonocity. Figure 5.1.1.2 shows the same values transformed into their 
decimal logarithms. The software used has deleted all points whose x coordinate was null, 
keeping the ranges of the non-null values in both axes. In fact only the output variable contains 
null values, which is due to a computational threshold set to 10-15 (all output values below this 
threshold are set to zero). This figure shows the spread of the non-null part of the output over 10 
orders of magnitude. Figure 5.1.1.3 shows the ranks of the output versus the rank of the input. 
Immediately, it can be recognised that around 350 out of 459 runs produced null output values 
(see the horizontal line and remind the rule given above to assign ranks in case of ties). 
Additionally, a threshold may be seen in the plot; roughly the 70 smallest input samples 
produced output values above the threshold (non-null) and no such output was obtained for input 
values above the 170th smallest one. 
 
Figures 5.1.1.4 to 5.1.1.6 describe the behaviour of the peak dose versus the input parameter W. 
Figure 5.1.1.4 does not provide much information about the dependence between input and 
output due to the spread of both over several orders of magnitude. Figure 5.1.1.5s show the linear 
dependence between the logarithms of both variables. Figure 5.1.1.5 shows the monotonic 
relation between both. The three plots show that, if a regression model is used study the 
sensitivity of the peak dose versus W, it would be more convenient either to study the relation 
between the logarithms of both or to study their monotonic relation. In fact, their Pearson 
correlation coefficient takes value –0.25 while the Pearson correlation coefficient between both 
logarithms takes values –0.69 and their Spearman rank correlation is –0.71. 
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Figure 5.1.1.1.- Dose at 104 y versus composite 
input parameter (raw values in both axes). Level_E 
test case. 

Figure 5.1.1.2.- Dose at 104 y versus composite 
input parameter (decimal logarithm in both axes). 
Level_E test case. 

Figure 5.1.1.3.- Dose at 104 y versus composite 
input parameter (ranks in both axes). Level_E test 
case. 

Figure 5.1.1.4.- Peak dose versus W (raw values in 
both axes). Level_E test case. 

Figure 5.1.1.5.- Peak dose versus W (decimal 
logarithm in both axes). Level_E test case. 

Figure 5.1.1.6.- Peak dose versus W (ranks in both 
axes). Level_E test case. 
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Scatter-plots may also be used to study the dependence between output variables. Though this 
cannot be considered proper SA, it may provide very useful information about the system model. 
Figures 5.1.1.7 and 5.1.1.8 show, respectively, the dependence between the total peak dose and 
the peak dose due to 129I and between the total peak dose and the peak dose due to 36Cl in a given 
repository. In the upper-right corner of figure 5.1.1.7 and in the central part of figure 5.1.1.8, two 
rows of points set on straight lines may be identified. In fact both lines are close to the straight-
line y=x. This means that the largest peak doses are produced mostly by 129I while 36Cl is 
responsible for the smallest peak doses. 
  
 

  
Figure 5.1.1.7.- Total peak dose versus peak dose 
due to 129I in a system model (decimal logarithm in 
both axes). 

Figure 5.1.1.8.- Total peak dose versus peak dose 
due to 36Cl in a system model (decimal logarithm in 
both axes). 

 
 
Three-dimensional (3-D) scatter-plots or XYZ plots show the projection of the sample points 
(X,Y) on the (Xi,Xj,Y) space. The information they are able to provide is also valuable. The 
extraction of such information is limited, though challenging, due to obvious interpretation 
problems when a 3-D figure is shown on a 2-D display. Software packages that allow changing 
the angle of the view may enhance and broaden their applicability. As in the case of normal 2-D 
scatter-plots, the use of convenient scale transformations may help identifying interesting model 
features. Figures 5.1.1.9 and 5.1.1.10 show the 3-D scatter-plots of the peak dose versus V1 and 
W. In the first one raw values are shown in the three axes, while both input parameters have been 
transformed into their decimal logarithms in the second one. While figure 5.1.1.10 shows clearly 
the effect of the interaction between both inputs on the output, this is not seen so clearly in figure 
5.1.1.9 (largest outputs values are obtained when V1 takes very large values and W takes very 
small values). 
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Figure 5.1.1.9.- Peak dose due to 129I versus V1 and 
W (raw values in all axes). Level_E test case. 

Figure 5.1.1.10.- Peak dose due to 129I versus V1 
and W (decimal logarithm in both input axes). 
Level_E test case. 

 
 
Extensions of scatter-plots are matrices of scatter-plots and overlay scatter-plots. Matrices of 
scatter-plots show simultaneously, under a matrix format, the scatter-plots of different pairs of 
input parameters/output variables. They allow identifying quite quickly the pairs with most 
remarkable relations, but they are also affected by the loss of accuracy due to including several 
plots in a reduced space, typically a fraction of a page. Overlay scatter-plots allow showing the 
same plot the scatter-plot of one output and several inputs. In order to distinguish the points 
corresponding to different inputs, different symbols (dots, circles, crosses, diamonds, etc.) and 
different colours are used. Frequently only a few inputs may be represented due to either the 
different scales used in the plot or to the difficulties to interpret correctly so many overlapped 
different symbols. 
 

5.1.2. Cobweb plots 
 
Cobweb plots have been designed to show multidimensional samples in a two-dimensional 
graph, see Cooke and Van Noortwijk (1999). Vertical parallel lines separated by equal distances 
are used to represent the sampled values of a given number of inputs/outputs, usually not more 
than ten or twelve, in order to keep the plot sufficiently clear. Each vertical line is used for a 
different input/output and either the raw values or the ranks may be represented (either raw 
values or ranks in all lines, never mixed). Sampled values are marked in each vertical line and 
jagged lines connect the values corresponding to the same run. Coloured lines can be used to 
display the different regions of any input parameter or output variable. Moreover, flexible 
conditioning capabilities enable an extensive insight into particular regions of the mapping. The 
cobweb plots are sometimes provided together with ‘cross densities’ showing the density of line 
crossings midway between the vertical axes. Therefore, an informed and careful analysis of 
cobweb plots enables the characterisation of dependence and conditional dependence. 
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Figures 5.1.2.1 to 5.1.2.4 are cobweb plots that show the relation between the 9 input parameters 
considered in the Level_E test case and the output variable peak dose. All these cobweb plots are 
based on the ranks; no one is based on the raw values. Figure 5.1.2.1 is an unconditional cobweb 
plot, where coloured lines have been used to distinguish between runs related to the lower 
(yellow), lower-medium (green), upper-medium (blue) and upper (black) quartile regions of the 
output variable. The output variable is represented in the last column; the rest of the columns are 
dedicated to each input parameter according to the legend behind them. Paying attention to what 
colours predominate in each region of each input parameter, we may get an idea about the 
complex relation between inputs and output.  
 
 

Figure 5.1.2.1.- Unconditional cobweb plot (ranks) 
for the peak dose due to 129I and all input parameters. 
Level_E test case. 

Figure 5.1.2.2.- Conditional cobweb plot (ranks, 
condition: 10% largest output values) for the peak 
dose due to 129I and all input parameters. Level_E 
test case. 

Figure 5.1.2.3.- Conditional cobweb plot (ranks, 
condition: 10% intermediate output values) for the 
peak dose due to 129I and all input parameters. 
Level_E test case. 

Figure 5.1.2.4.- Conditional cobweb plot (ranks, 
condition: 10% smallest output values) for the peak 
dose due to 129I and all input parameters. Level_E 
test case. 
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Nevertheless, the authors of this report find more convenient the use of conditional cobweb plots. 
In this type of plots only a fraction of the runs obtained are represented. Figure 5.1.2.2 shows the 
runs that produced the 10% highest peak doses. We can see in the plot that these doses are 
always obtained when W takes values below its own median and V1 takes values above its own 
median (with only one exception). For the rest of the input parameters, such a clear relation 
cannot be observed, in fact, what we see is that almost any region of the other input parameters 
may produce large values of the output. In order to produce figure 5.1.2.3, we have conditioned 
the plot to the 10% of intermediate values of the peak dose. In this case, no clear relation may be 
seen between that region of the output and any specific region of any input parameter. In figure 
5.1.2.4 the 10% of smallest values of the peak dose have been selected to condition the plot. It 
may be seen that those outputs are related to small values of V1 and high values of W and R1. 
 

5.1.3. Contribution to the sample mean plot (CSM plot) 
 
The Contribution to the Sample Mean plots (CSM plots) were developed in the early 1990’s. 
Sinclair (1993) was investigating the way infinitesimal changes to the probability density 
function (pdf) of an input variable Xi can alter overall features of performance (mean and 
variance of Y). The marginal dependence of E(Y) on the various input factors was employed and 
portrayed graphically. Nevertheless, Sinclair considered his ‘sensitivity plot’, as he called it, as a 
useful graphic tool for estimating sensitivity ‘by eye’.  
 
In order to create a Contribution to the Sample Mean Plot (CSM plot), we assume that a random 
sample S of size n of the input factors and the corresponding sample of the output variable 
considered are available. We do also assume that the random sample has been obtained via a 
sampling technique that introduces no bias. Suitable sampling schemes might be, for example, 
simple random sampling, LHS and proportional stratified sampling, while non-proportional 
stratified sampling (i.e.: optimal stratified sampling) or importance sampling would not be 
acceptable schemes. To build the CSM plot for a given input variable, let us say Xi, and the 
response Y, the following procedure is applied: 
 

1. the realisations of Xi are sorted generating the series of values },...,,{ )()2()1( n
iii xxx , 

2. the corresponding series of values [1] [2] [ ]{ , ,..., }ny y y is created,  
3. the ancillary variable Mi is defined, whose sampled values are obtained from the sampled 

values of Xi and Y as 
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= =∑ ,                                     (5.1.3.1) 

 
4. Mi is normalised dividing the values q

im by the sample mean of Y, 
5. The sampled values of Mi are plotted versus the cumulative distribution of Xi. 
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Using the approach described previously, the estimates of the following quantity are represented 
on the y-axis  
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which is the fraction of the output mean corresponding to values of Xi smaller or equal to its 
quantile of order q. The subindex (-i) indicates the exclusion of the input parameter Xi. In 
expression 5.1.3.2 XΩ , )( i−ΩX  and q

ii xx ≤  mean that the respective integrals are computed on the 
whole input space, on the whole input space excluding input parameter Xi and on Xi up to its 
quantile of order q. Given the definition of the plot in step 5, each point in a CSM plot represents 
the fraction of the output mean due to any given fraction of smallest values of an input 
parameter. 
 
A CSM plot represents indirectly a contribution to the variance. Indeed, if for a given quantile 
range, all realisations of Y are very close to the mean, this also implies that there is a very low 
contribution to the variance. Any significantly low and significantly high contribution to the 
mean represents locally an important contribution to the variance. 
 

 
Figure 5.1.3.1.- CSM plot for four input parameters and an output variable. The 95% confidence band 
around the diagonal is included . 
 
Figure 5.1.3.1 shows the CSM plot for one output variable and four input parameters of a 
simulation model. The sample used, a simple random sample, contains 100 Monte Carlo 
realisations. Each curve is characterised by a fairly different behaviour. Roughly speaking, each 
region of equal probability of X1 and X4 are responsible for the same percentage of the output 
sample mean (the line is always close to the diagonal). Regarding X2, its 60% smallest values are 
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responsible for more than 99% of the output sample mean. Only values of X3 between its median 
and its quantile of order 0.85 produce output values significantly different from 0. This region is 
responsible for more than 99% of the output sample mean. Other similar statements could be 
made, as for example: values between the quantiles of order 0.70 and 0.80 of X3 produce more 
than 55% out the output sample mean. The meaning of the two dotted lines parallel to the 
diagonal will be explained later in this section. 
 
The main use of CMS plots is to identify important input parameters. In principle, an input 
parameter could be considered as non-important if knowing its value doesn’t provide much 
information about the value of the output, which means that the value of the output depends 
more on the values of other input parameters than on its own values. In this case, a completely 
non-important variable, in relation with a given output variable would be characterised by the 
fact that the values of both would be randomly associated. High, low and intermediate output 
values would be equally obtained in any region of a non-important variable, which means that a 
behaviour similar to the ones of X1 and X4 in figure 5.1.3.1 could be expected (lines close to the 
diagonal). 
 
Input parameters could be considered as important if knowing its value provides relevant 
information about the value of the output. This means that concentrations of low, intermediate 
and high values of the output could be expected to be associated to different regions of the input 
parameter. This is the type of behaviour observed in input parameters X2 and X3 in figure 
5.1.3.1, where clear departures from the diagonal can be observed. 
 
The most similar plot available in scientific literature is the Lorenz curve for measuring the 
concentration of wealth; see Lorenz (1905). The Lorenz curve shows the distribution of income 
among families in a given region or country. In the y-axis the percentage of income is 
represented, while in the x-axis the percentage of poorest families is represented. Each point of 
the curve represents the percentage of the total income obtained by a given percentage of the 
poorest families. A potential Lorenz curve could show that the 50% of the poorest families 
obtain 10% of the total income while the 5% wealthiest families get 40% of the income, which 
would be the case of a country with very unequal distribution of wealth. The diagonal represents 
an ideal situation where all families get the same income. These curves are frequently used to 
compare the situation in different countries or the evolution of the concentration of wealth over 
time in a country. The main differences between these plots and CMS plots are that these plots 
are usually created from aggregated data obtained via official statistics instead of using the raw 
sampled data and that, by construction, the Lorenz curve takes all their values on or below the 
diagonal. 
 
CMS plots should be used only when non-biasing sampling schemes have been applied to obtain 
the data. If a sampling technique that introduces biases is used (i.e.: importance sampling) 
regions of equal length in the x-axis do not represent any more equally likely regions. Under this 
circumstance the diagonal doesn’t hold as the reference to measure lack of importance, and the 
interpretation of the plot becomes really difficult and different for different input parameters 
since the bias introduced could vary among the different parameters. 
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CSM plots as designed by Sinclair (1993) are suitable only for output variables that take positive 
or null values. Scale transformations, as for example taking the absolute value or shifting the 
output variable values by adding the opposite of its minimum value, are pertinent in case of 
either having output variables that either take only negative values or take negative and positive 
values.  
 
A particularly relevant feature of these plots is the possibility of representing in the same figure 
the relation of many input parameters with one output variable. This is a clear advantage with 
respect to scatter-plots. Though overlay scatter-plots provide some flexibility regarding this 
point, the extraction of relevant information from this representation is limited. CMS plots could 
also be used to study the relation between one input parameter and many output variables, even 
to represent the relation between different inputs and outputs. Nevertheless, the authors of this 
report consider the first use (several input parameters and one output variable) as the standard 
and most useful one. 
 
CMS plots provide interesting information about the relation between inputs and outputs but it is 
only qualitative. After the analysis of figure 1, it could be concluded that X2 and X3 are 
important parameters producing a visible impact on the output variable, while X1 and X4 are not. 
This is a statement based on our visual perception of the information contained in the plot, which 
is not supported by any numeric measure so far. In fact, no measure is available yet even to rank 
the input parameters in order of importance; who has a stronger impact on the output, X2 or X3? 
Could the behaviour shown by X3 have been obtained just by chance? 
 
Bolado et al. (2008) have proposed a test to study when the deviations from the diagonal 
observed in a CSM plot are statistically significant and when they may be obtained due to 
randomness. This is a permutations based test, which is explained in the next paragraphs 
 
The inputs plus the output of interest are grouped in a (X,Y) random vector containing k+1 
components characterised by its joint multivariate probability density function ),(, Yf Y XX . An 
input parameter Xi is completely non-important if the value taken by the output depends only on 
the values of the other k-1 input parameters. Under this hypothesis, the conditional distribution 
of Y given the value of Xi is independent of that value. In other words, this means that the 
conditional distribution of Y given a value of Xi equals the marginal distribution of Y 
( )()( yfxXyf YiiXY i

== ), whatever the values of Xi. 
 
When the factor Xi is not influential on the output Y, if a permutation is carried out on the 
realisations of Xi, since Y only depends on the other (unchanged) k-1 inputs, the realisations of 
Y are not altered and the same curve in CSM plot will be obtained.  However, when Xi is 
somehow influent on Y, the permutation will lead to 2 distinct curves.  
 
Let us consider a sample S of size n of the vector (X,Y). Computing all possible permutations 
(n!), all possible CSM curves can be drawn for the pair (Xi,Y). In order to restrict the analysis to 
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the information already available in the sample (no additional model run), only one model input 
is permuted at the time. 
 
The rationale carried out in the last two paragraphs characterise the structure of the test to be 
developed. In order to set up this test, the hypothesis under which the test may be applied is 
specified, the null and the alternative hypotheses are provided and the test statistic is defined: 
 

• Assumption: a sample S of size N for the vector (X,Y) is available. The sample of X 
has been obtained via a random sampling technique which does not introduce any 
bias (see section 2). The sample of Y has been obtained via simulation using the 
sample of X. 

• Hypotheses (null hypothesis H0 and alternative hypothesis H1): 
o H0: iiYiiXY RxyfxXyf

i
∈∀==       )()( ,  

o H1: )'()(/', iXYiXYiii xyfxyfRxx
ii

≠∈∃ , where Ri is the support of Xi. 

• Test statistic: Dm, the maximum vertical distance (absolute value) between the line 
built according to the procedure described in section 2 and the plot diagonal. This is 
the measure of discrepancy with the null hypothesis. 

 
The distribution of the test statistic can be computed using the permutations described 
previously. However, since the total number of permutations (n!) increases rapidly with the 
sample size n (ex: 10!= 3628800), only part of them are carried out in practice. The larger n and 
the number of permutations considered, the better the approximation of the “maximum distance 
to the diagonal” distribution. Note that the permutations do not imply any additional model run. 
It is important to emphasize that since the distribution is calculated from the original sample, a 
different sample will provide another estimate for the “maximum distance to the diagonal” 
distribution. 
 
Given a sample of (X,Y), the “sensitivity test” for a factor Xj can be summarised by the steps 
described below: 
 

1. Estimate the distribution of the test statistic via Monte Carlo:  
a. An important number (ex. 103) of permutations are carried out for the values of 

Xj. 
b. A CMS plot is generated for each permutation. 
c. The test statistic Dm (maximum distances to the diagonal) is computed for each 

CSM. 
d. The cumulative distribution function of Dm is estimated using standard statistical 

methods (empirical distribution function and all quantiles via order statistics). 
2. Set a critical level α to perform the test (typically 0.10, 0.05, 0.01) 
3. Dmα, the value of the test statistic corresponding to α (quantile 1- α of the test statistic 

under the null hypothesis) is computed. 
4. The CMS plot is generated with the original sample and the corresponding test statistic 

Dmj is computed. 
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5. The null hypothesis H0 is rejected if Dmj> Dmα, otherwise it is accepted.  
 
In order to illustrate the approach described previously, the procedure is applied in a stepwise 
manner and the parameters importance is inferred. Figure 5.1.3.2 shows the results of computing 
103 permutations and creating the corresponding lines in a CMS plot with the same data used to 
get figure 5.1.3.1. The maximum distance to the diagonal has been computed for each line. 
Figure 5.1.3.3 shows the empirical cumulative distribution obtained from that set of distances. 
When α=0.05, Dmα=0.2548 and the maximum distances to the diagonal obtained for X1, X2, X3 
and X4 are, respectively, 0.0850, 0.5058, 0.5692 and 0.1394. When comparing these four values 
with Dmα, the null hypothesis should be rejected for X2 and X3, and it should be accepted for X1 
and X4. This means that a maximum distance to the diagonal like the one obtained for X1 or 
larger could have been quite likely achieved under the null hypothesis (approximate 
p_value=0.982). That is also the case of X4 (p_value=0.628) while that is not true for X2 and X3, 
in fact such large distances are very unlikely under the null hypothesis. The p-values are smaller 
than 0.001 in both cases and the estimate of the quantile of order 0.999 of Dm under the null 
hypothesis is 0.3527. P-values for each input may be estimated by interpolation in the empirical 
distribution function of Dm.  
 
 

Figure 5.1.3.2.- 1000 CSM lines obtained by 
permuting the values of the output. The data used are 
the same used to create figure 5.1.3.1. 

Figure 5.1.3.3.- Empirical cumulative distribution 
function of Dm under the null hypothesis (non 
important input parameter). 

 
 
The result of the test may also be seen graphically in figure 5.1.3.1. The dotted lines parallel to 
the diagonal are obtained by shifting it a length Dmα upwards and downwards. They define a 
band in the plot. If a line trespasses (outwards) the limits of that band, it means that its maximum 
distance to the diagonal exceeds Dmα; in this case the null hypothesis is rejected. Figure 5.1.3.1 
also emphasises that the null hypothesis is rejected in the case of X2 and X3 but not in the case of 
X1 and X4. 
 
Moreover, the four input parameters could be ranked in order of importance according to the 
measure of importance developed (maximum distance to the diagonal – test statistic). X3 would 
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be the most important one (Dm=0.5692), followed by X2 (Dm=0.5058), X4 (Dm=0.1394) and by 
X1 (Dm=0.0580). The authors of this report consider that only input parameters that result in a 
rejection of the null hypothesis (Dm>Dmα), and perhaps those close to the rejection area, should 
actually be ranked. Usually, ranking input parameters that fall clearly in the null hypothesis 
acceptance region is completely meaningless, and their ranking could dramatically change from 
one sample to another one. This is the case of X1 and X4. 
 

5.2. Monte Carlo based methods 
 
The Monte Carlo method consists in sampling at random the vector of input parameters, running 
the system model computer code for each sample of that vector and getting a sample of the 
vector of output variables. Later on, the characteristics of the output variables may be estimated 
using the output samples obtained. One of the advantages of using the Monte Carlo method is 
that all statistical standard methods we need to estimate the output variables distributions and to 
test any hypothesis may be used. This makes it the most straightforward and powerful method 
available in the scientific literature to deal with uncertainty propagation in complex models, as it 
is the case of PA models. This method is valid for models that have static and also dynamic 
outputs. It is adequate for working with discrete and continuous inputs and outputs, and the 
implementation of computational algorithms required has no fundamental complexity. SA 
methods adapted to Monte Carlo samples are extremely convenient since they allow performing 
SA and UA using the same sample. 
 

5.2.1. Correlation and regression – based methods 
 
Several sampling strategies are available when using Monte Carlo to propagate uncertainties and 
perform SA, but the most used are Simple Random Sampling (SRS) and Latin hypercube 
Sampling (LHS). The most commonly used analysis is the one based on the computation of the 
correlation coefficient. The correlation coefficient provides a measure of the strength of the 
linear relationship between any input factor Xj and the output Y. In this section the input factors 
are supposed independent. 
 

5.2.1.1. Correlations: Pearson correlation coefficient 
 
This coefficient is the linear correlation coefficient of the sample and it is defined as: 
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/  are the sample means. The values of this coefficient 
are between 1− and 1. A positive value means that both Xj and Y are increasing or decreasing 
together while a negative value means that Xj and Y tend to move in opposite directions. An 
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absolute value of ),( yxCC j close to one corresponds to a linear relationship, while an absolute 
value close to zero corresponds to the fact that there is no linear relationship between Xj and Y. 
 
 

  
 
Figure 5.2.1.1.1.: Samples with strong linear relationship (left) and no linear relationship (right) between 
X and Y 
 
 
We present in figure 5.2.1.1.1 two examples, one with a strong linear relationship between X and 
Y, for which the Pearson correlation coefficient is equal to 0.9825 and another one with no linear 
relationship between the two variables and for which the correlation coefficient is equal to 
0.0699. The Pearson correlation coefficient is related to the results of a linear regression for Y 
and X, i.e. it is equal to the standardized regression coefficient of the regression, and its square is 
equal to the coefficient of determination (R2) of the regression.  
 

5.2.1.2. Correlations: Spearman correlation coefficient 
 
Whenever a nonlinear but monotonic relationship between Xj and Y exists, a rank transformation 
can be used to get a linear relationship. This transformation replaces the values of Xj and Y by 
their corresponding ranks, see section 5.1.1. Spearman correlation coefficient (denoted by RCC 
for rank correlation coefficient) is computed using the same expression 5.2.1.1.1 as the Pearson 
correlation coefficient except that the ranks of each variable are used instead of the raw values. 
 
 

 
Figure 5.2.1.2.1.-  Example of data for which the Spearman and the Pearson correlation coefficients are 
compared. 
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If we compute the Spearman and the Pearson correlation coefficients for the data in figure 
5.2.1.2.1, we obtain: RCC=0.9792 and CC=0.8931. The Spearman coefficient is larger than the 
Pearson coefficient because it reflects the fact that the relationship between the two variables is 
monotonic instead of linear. 
 

5.2.1.3. Regression: general framework 
 
Regression is a technique that allows building an approximate empirical model starting from a 
sample of the input and output variables. The simplest models are those that can be written as  
 

εβββ ++++= )()()( 110 xxx MM ffy K                                 (5.2.1.3.1)       
 
where ),0(~ 2σε N (normal distribution with null mean and variance σ2) is a white noise 
independent of xi. The model is linear in its parameters ),,,( 10 Mββββ K= . The functions 

Mff ,,1 K are predefined. They can be the input variables, some transforms of those variables 
(such as logarithms, powers, square roots…), functions of several variables, etc. 
 

5.2.1.4. Regression: first order polynomial 
 
In the class of linear models, the simplest ones are the first order polynomials: 
 

0 1 1( ) k ky x xβ β β ε= + + +Kx .                                         (5.2.1.3.2) 
 

The coefficients 0 1( , , , )T
kβ β β β= K are computed using the sample, such that the error ε  is 

minimized in the least squares sense.  
 
Let us recall the classical notations in regression: 
 

• 1( , , )kx x= Kx   a realization of the vector of input factors. 
• ),,( 1 nxx K  : a sample of n realizations; each jx has k coordinates. For simplicity 

sake, this sample is written in matrix notation as 
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K

X  where a column of ones have been added. 

 
• T

nyy ),,( 1 K y = : the sampled output. 
• T

n ),,( 1 εεε K  = : a vector of random errors. 
 
With the matrix notations the model 5.2.1.3.2 becomes: 
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εβ += Xy                                                                    (5.2.1.3.3) 
 
The least squares estimator of β  is  
 

( ) y XXX TT 1ˆ −
=β                                                             (5.2.1.3.4) 

 
and the fitted regression model is  

 
β̂ˆ X y = .                                                                         (5.2.1.3.5) 

 
An important feature of the linear regression is the decomposition of the total sum of squares 
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The ratio  
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measures the extent to which the regression model matches the data and is called the coefficient 
of multiple determination. A value of 2R close to 1 indicates that the regression model is 
accounting for most of the uncertainty in y, while a value of 2R close to 0 indicates that the 
regression model do not explain the uncertainty in y.  
 
When the input factors are independent, the value of 2R can be decomposed as 

2 2 2 2
1 2 kR R R R= + + +K , where each individual 2

jR  represents the contribution of xj to the 2R  

value. 2
jR  is computed as the 2R value for the model where the only input factor is xj.  

 
The equation 5.2.1.3.5 describes a hyper plane in the k-dimensional space of the input variables. 
The parameter 0β̂  represents the intercept of the hyper plane, while each of the parameters jβ̂  
represents the expected change in the output y per unit change in xj when all the remaining 
independent variables are constant. With this interpretation, the parameters jβ̂  are candidates for 
sensitivity indicators except that each one is influenced by the units in which the corresponding 
xj is expressed, and that it doesn’t give any information on the distribution of Xj. To fix this 
problem, the regression model 5.2.1.3.2 is replaced by a model where all the variables have been 
standardized: 
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jss  ,  being the sample standard deviations for y and jx :  
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n

i in xxsyys .                                (5.2.1.3.9) 
 

 
The regression coefficients of this new model are called standardized regression coefficients 
(SRC). They provide a sensitivity measure, or more precisely a measure of variables importance:  
 a variable Xj is more important than a variable Xl  if the absolute values of their standardized 

regression coefficients are satisfying   |SRCj| > |SRCl| 
 the sign of SRCj indicates whether Xj and Y tend to move in the same direction or in 

opposite ones.  
 
Moreover if the input factors Xj are independent, the inclusion or exclusion of one factor has no 
effect on the SRCs of the other factors in the model. If the input factors are not independent, the 
information provided by the SRCs is not reliable (for the variable importance). 
 
The relationship between the standardized regression coefficients SRCj and the regression 
coefficients jβ̂  is 

j
j

j s
s

SRC β̂=                                                        (5.2.1.3.10) 

 
Taking into account all the previous considerations, a stepwise procedure to build a regression 
model can be conceived. First model is build with the most influential variable (based on 

2R values for regression models with only one variable). Then a regression model in build with 
this first selected variable and the next most influential one (based on 2R values for regression 
models with the first selected variable and each of the remaining ones). The procedure is 
repeated until no more variable with significant change in the cumulative 2R can be found.  
 
 

5.2.1.5. Regression: example of transport of a radionuclide in a nuclear 
waste repository 

 
This example deals with the transport of one radionuclide (129I) in a nuclear waste repository. 
The computation is restricted to a 2-D section of the disposal site, which has three different 
geological layers; the nuclear waste being disposed in the first one (the deepest one).  
The numerical code used for this model is CAST3M (http://www-cast3m.cea.fr/).  The 
computations linked to the sensitivity computations have been performed using R. The example 
have been studied in a Momas project: 
(http://www.gdrmomas.org/Activites/2007/MoMaS_Frejus/Vendredi/Badea.pdf). 
 
The input of the numerical code consists of six environmental parameters: 

 Kh1 : horizontal permeability of the first layer  
 Kv1 : vertical permeability of the first layer  
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 K2 : permeability of the second layer  
 K3 : permeability of the third layer  
 poro : effective porosity 
 de : effective diffusion coefficient 

 
The output y is the maximal release (concentration) of 129I up to 106 years at a predefined point 
located on the top of the third layer (and called exutory). The sampling has been done by latin 
hypercube sampling with n=60. The distributions for the input parameters are: log-normal for the 
permeabilities and the effective diffusion coefficient and uniform for the effective porosity. 
 
We consider the model  
 

εβββββββ +++++++= deporoKKKvKhy 65342312110 . 
 

The results for this regression analysis are given in table 5.2.1.5.1. The overall 2R  value is 
4657.02 =R , which is not very close to 1, meaning that the regression model is not accounting 

for most of the uncertainty in y. However, the standardized regression coefficients are indicating 
that the first most important variables are, in this order, poro, Kv1, K3. These three variables are 
accounting for 96% of the overall 2R  value. We can also see that the signs of the SRC for poro, 
and K3 indicate that they tend to move in opposite direction as the output while Kv1 tend to 
move in the same direction as the output.  

 
 
Table 5.2.1.5.1.- Results for the regression analysis in the example of the transport of a radio nuclide. 
Variable 
name 

Regression 
coefficients 

Standardized 
regression 
coefficients 

Order of 
selection 
in 
stepwise 
regression 

Cumulated 
2R in 

stepwise 
regression 

Partial correlation 
coefficients 

 
0β̂ = 1.528e−04      

Kh1 
1β̂ = 9.252e+05   SRC1= 5.099e−03 6 0.4657 PCC1= 6.788e−03   

Kv1 
2β̂ = 5.548e+08 SRC2= 3.519e−01 2 0.3748 PCC2= 4.247e−01  

K2 
3β̂ = 4.437e+03 SRC3= 7.112e−02 5 0.4656 PCC3= 9.555e−02   

 
K3 

4β̂ = −3.86e+01 SRC4= −2.915e−01 3 0.4454 PCC4= −3.636e−01 
poro 

5β̂ = −1.03e−03 SRC5= −3.960e−01 1 0.2496 PCC5= −4.655e−01 
de 

6β̂ = 1.028e+07 SRC6= 1.320e−01   4 0.4607 PCC6= 1.711 e−01 
 
 

5.2.1.6. Regression: partial correlation 
 
Sometimes the correlation between Xj and Y may be due to a third variable. In order to avoid 
that, the partial correlation coefficient is defined as follows.  
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Two regression models have to be constructed  
 

εββδαα ++=++= ∑∑
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≠
=

d

ji
i ii
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i iij xyxx 1010    and   ,                    (5.2.1.6.1) 

 
with the corresponding fitted regression models 

 

∑∑
≠
=

≠
= +=+=

d

ji
i ii

d

ji
i iij xyxx 1010

ˆˆˆ   and   ˆˆˆ ββαα .                           (5.2.1.6.2) 

 
The partial correlation coefficient (denoted PCC) is then the Pearson correlation coefficient 
defined by expression 5.2.1.1.1, for the variables yyxx jj ˆ and  ˆ −− . 
  
Both PCCs and SRCs provide measures of variable importance. PCCj characterizes the linear 
relationship between Xj and Y after excluding the linear effects on Y of the other input factors. 
When the input factors are independent, PCCs and SRCs give the same ranking of variable 
importance, i.e. an ordering based on the absolute value of PCCs is the same as an ordering 
based on the absolute value of SRCs.  
 
One has also to keep in mind that if the input factors are correlated, the results based on SRCs or 
on PCCs may be misleading, as some authors remark, see Helton et al. (2006).  
 
The PCCs for the example in the previous paragraph are also given in table 5.2.1.5.1. The 
ranking of variable importance is the same whether if we use SRCs or PCCs, though this is not 
always true. In many cases the ranking produced by both sensitivity indices is not the same, 
though it does not differ much. 
 

5.2.1.7. Regression: rank transformations 
 
In the same way as for the Spearman correlation coefficient, whenever a nonlinear but 
monotonic relationship between Xj and Y exists, a rank transformation can be used to get a linear 
relationship. Using the rank transformation leads to rank regressions and consequently to 
standardized rank regression coefficients (SRRCs) and partial rank correlation coefficients 
(PRCCs). The results of sensitivity analysis can be improved by using these coefficients when 
monotonic relationships between inputs and output exist.  The results for the rank regression 
analysis for the previous example are given in table 5.2.1.7.1. 
 
Table 5.2.1.7.1.- Results for the rank regression analysis in the example of the transport of a radionuclide. 

Variable 
name 

Standardized rank 
regression coefficients 

Partial rank correlation 
coefficients 

Order of variable 
importance  

Kh1 SRRC1= 8.29e−03 PRCC1= 2.578e−02 6 
Kv1 SRRC2= 3.362e−01 PRCC2= 7.238e−01 3 
K2 SRRC3= 8.726e−02 PRCC3= 2.626e−01 4 
K3 SRRC4= −5.325e−01 PRCC4= −8.564e−01 2 
poro SRRC5= −6.338e−01 PRCC5= −8.922e−01 1 
de SRRC6= 3.048e−02 PRCC6= 9.442 e−02 5 
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The three most important variables are the same as in the linear regression case, even if their 
order of importance is changed; for the rank analysis the ranking is poro, K3, Kv1, while for the 
standardized regression the order was poro, Kv1, K3. Moreover the overall 2R  value for this 
model is 0.89872 =R (it was 0.4657 for the model using the standardized variables). 
 

5.2.1.8. Regression: extensions 
 
Linear regression with first order polynomials is not enough in most cases under study, because 
the relationship between output and input factors is not a linear one. It is more interesting to 
study the standardized regression coefficients for different types of regression, as presented in 
the following. 
 
Output and input transformation 
 
In many PA applications, the variable of interest is not the output of the computer code, but a 
function of it, in other cases the relation between inputs and outputs is more easily analysed if 
some of them or both of them are transformed. In the PA area, many input parameters and output 
variables are spread over several orders of magnitude. In these cases, a logarithmic 
transformation of all parameters and variables with such spread of values could be of interest. 
For instance, for the previous example, we consider the following model: 
 

εβββββββ +++++++= deporoKKKvKhy 10653104210311021101010 loglogloglogloglog  
 
(for every variable, except poro, a logarithm have been applied). The overall 2R  value is 

0.91412 =R , which means that the quality of the model is quite good. The standardized 
regression coefficients are given in table 5.2.1.8.1. The results are more or less the same as those 
obtained for the rank regression. The order of importance changes only between variables K2 
and de, which where not the most significant ones. 
 
 
Table 5.2.1.8.1.- Regression results for the transformed data in the example of the transport of a 
radionuclide. 

Variable 
name 

Standardized regression 
coefficients 

Order of variable 
importance  

log10(Kh1) SRC1= 6.454e−03 6 
log10(Kv1) SRC2= 3.516e−01 3 
log10(K2) SRC3= 8.783e−02 5 
log10(K3) SRC4= −5.121e−01 2 
poro SRC5= −6.278e−01 1 
log10(de) SRC6= 9.475e−02 4 
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We can conclude that in some cases, by applying some usual transforms to the original variables, 
we can both conserve the simplest regression model and improve a lot the quality of the model 
(expressed in terms of 2R ). 
 
Second order polynomials 
 
In other cases some more complicated linear regression models may be considered, such as 
second order polynomials (or only first order and interaction terms), which are written as: 
 

εβββ +++= ∑∑
≤
=

=

d

ji
ji jiij

d

i ii xxxy 1,
10 .                                       (5.2.1.8.1) 

 
Similar interpretation as in the case of the first order polynomials might be given to the 
regression coefficients. However, one has to be aware of the fact that for instance the importance 
of variable x1 will be the result of an accumulation of different coefficients of the terms in which 
this variable appears. 
 
Functional outputs 
 
Many of the output variables considered in PA models are time dependent functions. In these 
cases, all the previously described coefficients may be computed at every time step, yielding 
time dependent curves.  
 
Example (NRG) 
 
This example comes from a joint work JRC/NRG concerning the probabilistic uncertainty 
analysis for the abandonment scenario for disposal facilities in rock salt (see figure 5.2.1.8.1 
(rleft)). The conceptual model of the generic repository design with the option to retrieve waste, 
as has been implemented in the EMOS. There are 6 input factors denoted by Aps, Brecr, F09, n, 
F47, F46 (with the following probability distributions: log uniform for Aps, Brecr, F47, F46, log 
normal for F09 and normal for n). A simple random sample of size 1000 has been used in this 
test case. 
 
There are 4 scalar outputs, and 7 time dependent ones. We present here some time dependent 
results for only one output, “B.2, Permeability of the plug” (the 1000 realizations for this output 
are presented in figure 5.2.1.8.1 (right)): 

• correlation coefficients: Pearson (figure 5.2.1.8.2), Spearman (figure 5.2.1.8.3) and   
• regression based coefficients: SRC (figure 5.2.1.8.4), PCC (figure 5.2.1.8.5), SRRC 

(figure 5.2.1.8.6), PRCC (figure 5.2.1.8.7) 
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Figure 5.2.1.8.1:  The abandonment scenario for disposal facilities in rock salt (left); 1000 realizations 
for the output “Permeability of the plug” (right) 
 

  
Figure 5.2.1.8.2.- Pearson correlation coefficients 
for every input variable  

Figure 5.2.1.8.3.- Spearman correlation 
coefficients for every input variable 

  
Figure 5.2.1.8.4.- SRC for every input variable and 
the corresponding R2 coefficient 

Figure 5.2.1.8.5.- PCC for every input variable 
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Figure 5.2.1.8.6.- SRRC for every input variable 
and the corresponding R2 coefficient  

Figure 5.2.1.8.7.- PRCC for every input variable 

 
 
Several remarks may be made about this set of plots; 

• the influence of the model input factors on the permeability of the borehole plug 
changes significantly  over time. 

• the rank based regressions provide more significant results. R2 is larger in the rank 
based regressions than in the regressions based on raw values at all time steps. In fact 
R2 is always larger than 0.7 in the first case while it is below that value a large 
fraction of the time in the second case. Remind that for values of R2 smaller than 0.6, 
the results of the regression should not be taken as very reliable. Moreover, statistics 
based on ranks (RCC, SRRC and PRCC) tend to take more extreme values (closer to 
±1) than statistics based on raw values (CC, SRC and PCC). 

• All techniques provide similar results, identifying as relevant input parameters the 
same set. 

• Two parameters change clearly the sign of their sensitivity indices over time (F09 and 
n). This behaviour is detected quite frequently in PA studies.  

 
These remarks remain true in many other applications, as for example the one shown in figures 
5.2.1.8.8 and 5.2.1.8.9, obtained for a French repository in clay. Pay special attention to the huge 
improvement in the value of R2 and the SRRC associated to the most relevant input parameters at 
early and intermediate times, with respect to the corresponding SRCs . Many other similar 
examples may be seen in Prváková et al. (2008). 
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Figure 5.2.1.8.7.- Evolution over time of SRCs and 
R2 for the molar flows of nuclides 129I coming out 
of the micro-fissured zone in a French repository in 
Clay. 

Figure 5.2.1.8.8.- Evolution over time of SRRCs 
and R2 for the molar flows of nuclides 129I coming 
out of the micro-fissured zone in a French 
repository in Clay. 

 
 

5.2.2. Monte Carlo filtering 
 
In the previous sections we could see a set of techniques that took as a base to interpret 
sensitivity the ideas of linearity and monotony. Nevertheless, sensitivity may be interpreted in 
different ways that have nothing to do with these two ideas. In some cases, we could consider an 
input parameter as important with respect to a given output variable if we are able to uncover a 
clear link between specific regions of both.  Monte Carlo Filtering (MCF) is based on dividing 
the output sample in two or more subsets according to some criterion (achievement of a given 
condition, exceeding a threshold, etc.) and testing if the inputs associated to those subsets are 
different or not. As an example, we could divide the output sample in two parts, the one that 
exceeds a safety limit and the rest. We could wonder if points in both subsamples are related to 
different regions of a given input or if they may be related to any region of that input. In the first 
case knowing the value of that input parameter would be important in order to be able to predict 
if the safety limit will be exceeded or not, while in the second case it would not be. The tools 
used to provide adequate answers to this type of questions are a set of parametric and non-
parametric statistics and their associated tests, among them the most popular are 
 

• The two-sample Smirnov test 
• The Mann-Whitney (or Wilcoxon) two-sample test 
• The two-sample t-test 

 
The two-sample Smirnov test is based on comparing empirical cumulative distribution functions, 
the Mann-Whitney test is based on ranks, the two-sample t-test is based on the sampling 
distribution of the mean of normal variables. Other tests, as for example the Kruskal-Wallis test 
and the k-sample Smirnov test are also available in the Statistics literature, see Conover (1980), 



  
 

 
47

which are respectively extensions of the Mann-Whitney and the Smirnov tests to several 
samples. These tests will not be included in this study because they have hardly ever been used 
with SA purposes, though formally they could be. 
 
Normally, when any of these tests is applied in other areas, two samples (Smirnov, Mann-
Whitney and t-test) are taken via random sampling from two or more populations, as for example 
the height of a set of boys and girls 10 years old in a given country. In our case, when the test is 
used with SA purposes, the samples used to perform the test are in fact subsamples of an input 
parameter sample. Let us see how those two samples are obtained 
 

1. Consider the samples obtained via simulation for a given input parameter X and an output 
variable Y: ),...,,( 21 nxxx  and ),...,,( 21 nyyy  

2. Then, sort ),...,,( 21 nyyy , obtaining ),...,,( )()2()1( nyyy , and re-order ),...,,( 21 nxxx  
according to the order of the sample of Y, obtaining ),...,,( ][]2[]1[ nxxx . 

3. Set a threshold on ),...,,( )()2()1( nyyy  based on a given criterion and divide it in the 
corresponding two subsamples ),...,,( )()2()1( hyyy  and ),...,,( )()2()1( nhh yyy ++ . Let us call ‘C’ 
the criterion. 

4. Divide accordingly the sample ),...,,( ][]2[]1[ nxxx in the two subsamples ),...,,( ][]2[]1[ hxxx  
and ),...,,( ][]2[]1[ nhh xxx ++ . These two subsamples will be the samples used to perform the 
test.  

 
The procedure to follow is the same if three or more samples are required, just set two or more 
thresholds in step 3 and act consequently in step 4. In the next sections a detailed description of 
these tests is given. 
 

5.2.2.1. The two-sample Smirnov test 
 
The procedure to perform a test is roughly the same for every test: 1) set assumption to perform 
the test, 2) set the null (H0) and the alternative (H1) hypotheses, 3) establish a measure of 
discrepancy (test statistic) between what is expected under the null hypothesis and under 
different conditions and, 4) set a decision rule. In the case of the two-sample Smirnov test, this 
procedure is as follows  
 

1. Assumptions: 
• Both samples are random and mutually independent 
• The variable considered should be continuous in order to get an exact test (having a 

discrete variable does not preclude the use of the test unless it takes only a few 
different values). 

2. Hypotheses: 
• H0: IRxxFCxF CXCX ∈∀=       C2)()1( 21  

• H1:       C2)x'()1'(/' 21 CXCX FCxFIRx ≠∈∃ , where C1 indicates fulfilling the criterion 

and C2 means not fulfilling the criterion 
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3. Discrepancy measure (test statistic): )()( 21 xSxSSupT CCxSmirnov −= , which is the 

maximum vertical distance between the empirical distribution functions ( )(1 xSC ) of 

),...,,( ][]2[]1[ nhh xxx ++ , the subsample of the input parameter linked to the subsample of the 
output variable that fulfils the criterion, and the empirical distribution functions ( )(2 xSC ) 

of ),...,,( ][]2[]1[ hxxx , the subsample which does not. 
4. Decision rule: set some limits for the p-values that allow the user decide if, from the 

result of the test it should be concluded that that input parameter is either important or not 
(reject or not reject the null hypothesis). Setting these limits is up to the user opinion, 
though, as a generally accepted rule, the null hypothesis is accepted if the p-value of the 
test is above 0.05, otherwise it is rejected. The distribution of the test statistic under the 
null hypothesis may be found in Conover (1980). As an alternative to this general rule, 
Saltelli et al. (2004) propose the following decision rule 
• P-value < 0.01 ==> the input parameter is critical. 
• 0.01 ≤ p-value ≤ 0.1 ==> the input parameter is important 
• p-value ≥ 0.1 ==> the input parameter is not important   

 
 

 
Figure 5.2.2.1.1.- Graphic representation of the computation of the two-sample Smirnov test for the peak 
dose due to 129I (output) and V1 (input). Level_E test case. The output sample has been divided in the 
largest 10% observations and the 90% smallest observations.  
 
 
Figure 5.2.2.1.1 represents the implementation of a Smirnov two-sample test. The sample 
considered to perform the test is a sample of size 459 obtained for the Level_E test case. The 
output variable is the peak dose due to 129I and the input parameter is V1, the velocity of ground 
water in the first geosphere layer. We have taken as a reference the 10% largest observations 
obtained for the output variable and we wish to know if these observations are related to a 
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specific region of V1 or not. This plot shows the empirical cumulative distribution functions 
corresponding to the two subsamples of V1, the one related to the 10% largest observations of 
the output variable (dashed line) and the one relasted to the other 90% observations (solid line). 
As indicated in the plot, the Smirnov statistic (maximum vertical distance between both curves) 
takes value TSmirnov=0.6733, which corresponds to a p-value=0.0. The result of the test is 
conclusive, certainly the values of V1 that produce the 10% largest values of the output variable 
and the values of V1 that produce the rest of the values of the same output variable, belong to 
two subpopulations of V1 that have very different properties (distributions). The p-value shows 
no ambiguity in the result. This can be observed in the same figure, all the values of the the 
subsample of V1 related to C1 are above the median of the values of V1 related to C2. Observe 
the similarity between the results of this test, included figure 5.2.2.1.1, and the information 
contained in figure 5.1.2.2. 

 
5.2.2.2. Mann-Whitney two-sample test 

 
As in the case of the Smirnov two-sample test, the assumptions, hypotheses, test statistic and 
decision rule are as follows 
 

1. Assumption: Both samples are random and mutually independent. 
2. Hypotheses: As for the Smirnov two-sample test. 
3. Discrepancy measure (test statistic):  
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][ )( ,                                            (5.2.2.2.1) 

  
where )( ][ixR  is the rank associated to observations ][ix  of the input parameter 
corresponding to the output values that satisfy condition C1. If there are many ties, which 
may happen only if the input parameter is discrete, the Mann-Whitney test statistic is 
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4. Decision rule: As for the Smirnov two-sample test. 

 
Figure 5.2.2.2.1 represents the implementation of a Mann-Whitney two-sample test. The sample 
considered to perform the test and the question at stake is the same as in the previous section. 
This plot shows ranks corresponding to the two subsamples of V1, the one related to the 10% 
largest observations of the output variable (represented by symbol ‘*’in figure 5.2.2.2.1) and the 
ones related to the other 90% observations (represented by symbol ‘o’in figure 5.2.2.2.1). The 
value of the test statistic is TMann-Whitney= 17534 , which corresponds to a p-value=0.0. The result 
of the test is again conclusive, certainly the values of V1 that produce the 10% largest values of 
the output variable and the values of V1 that produce the rest of the values of the same output 
variable, belong to two subpopulations of V1 that have very different properties (ranks). The p-
value shows no ambiguity in the result. This can be observed in the same figure, all the ranks of 
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the subsample of V1 related to C1 overlap only with the largest ranks of the subsample of V1 
related to C2. Observe the similarity between the results of this test, included figure 5.2.2.2.1, the 
results obtained in previous section with the Smirnov two-sample test and the information 
contained in figure 5.1.2.2. 
 
 

 
Figure 5.2.2.2.1.- Graphic representation of the computation of the two-sample Mann-Whitney test for 
the peak dose due to 129I (output) and V1 (input). Level_E test case. The output sample has been divided 
in the largest 10% observations and the 90% smallest observations. 

 
5.2.2.3. Two-sample t test 

 
As in the case of the Smirnov two-sample test and the Mann-Whitney test, the assumptions, 
hypotheses, test statistic and decision rule are as follows 
 

1. Assumption:  
• Both samples are random and mutually independent. 
• Both samples come from normal (Gaussian) populations with equal variances. 

2. Hypotheses: As for the Smirnov and Mann-Whitney two-sample tests. 
3. Discrepancy measure (test statistic):  

 

hnh
S

xxt

T −
+

−
=

11ˆ
21 ,                                               (5.2.2.3.1) 

  



  
 

 
51

where 1x  is the sample mean of ),...,,( ][]2[]1[ nhh xxx ++ , 2x  is the sample mean of 

),...,,( ][]2[]1[ hxxx , and TŜ is the weighted common estimator of the variance of both 
subsamples 
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where 2

1Ŝ  and 2
2Ŝ  are, respectively, the estimators of the variance of ),...,,( ][]2[]1[ nhh xxx ++  

and of ),...,,( ][]2[]1[ hxxx . 
4. Decision rule: As for the Smirnov two-sample test. 

 
 

 
Figure 5.2.2.3.1.- Graphic representation of the computation of the two-sample t test for the peak dose 
due to 129I (output) and V1 (input). Level_E test case. The output sample has been divided in the largest 
10% observations and the 90% smallest observations. 
 
 
Figure 5.2.2.3.1 represents the implementation of a two-sample t test. The sample considered to 
perform the test and the question at stake is the same as in the previous two sections. This plot 
shows the raw values corresponding to the two subsamples of V1, the one related to the 10% 
largest observations of the output variable (represented by symbol ‘*’in figure 5.2.2.3.1) and the 
ones related to the other 90% observations (represented by symbol ‘o’in figure 5.2.2.3.1). The 
value of the test statistic is t=9.33, which corresponds to a p-value=0.0. The result of the test is 
again conclusive, certainly the values of V1 that produce the 10% largest values of the output 
variable and the values of V1 that produce the rest of the values of the same output variable, 
belong to two subpopulations of V1 that have very different properties (means). The p-value 
shows no ambiguity in the result. This can be observed in the same figure, all the raw values of 
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the subsample of V1 related to C1 overlap only with the largest ranks of the subsample of V1 
related to C2. Observe the similarity between the results of this test, included figure 5.2.2.3.1, the 
results obtained in previous sections with the Smirnov two-sample test and the Mann-Whitney 
two-sample test, and the information contained in figure 5.1.2.2. 
 
Nevertheless, in this case, results should be taken cautiously. Figures 5.2.2.3.2 and 5.2.2.3.3 
show respectively the histograms of samples ),...,,( ][]2[]1[ nhh xxx ++  and ),...,,( ][]2[]1[ hxxx . Though 
the first histogram resembles reasonably well the shape of a normal distribution, the second one 
is certainly far from being close to such a shape. This means that, under such violation of one of 
the assumptions of the test, the validity of the result is under question. Under these 
circumstances, the best option is to discard this test. It is also worthwhile to realise that the 
assumptions for the Smirnov test and the Mann-Whitney test are so broad and generic that it is 
difficult to find a situation in a PA when they cannot be applied. As a general conclusion, 
Smirnov and Mann-Whithney test have a much broad applicability in the framework of PA 
studies than the t test.  
 
 

Figure 5.2.2.3.2.- Histogram of the subsample of 
V1 corresponding to the 10% largest values of the 
peak dose due to 129I.  Level_E test case.  

Figure 4.2.2.3.3.- Histogram of the subsample of V1 
corresponding to the 90% smallest values of the 
peak dose due to 129I.  Level_E test case. 

 

5.3. Variance decomposition based methods 
 
The main measure to quantify the uncertainty affecting any output variable is its variance V(Y), 
as for any other random variable. In a PA model, as in many other simulation models, the 
uncertainty of any output variable is the result of propagating uncertainties from the input space 
into the output space. So, each input parameter is responsible for a fraction of the output 
variance. Variance based methods take this fraction as the reference sensitivity measure and 
provide the means to estimate it. In the next pages we describe the main variance based methods.  
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5.3.1. HDMR decomposition 
 
Variance based methods are linked to the HDMR (High Dimensional Model Representation) 
which consists in decomposing ),,( 1 dXXfY K= in the form: 
 

1 0 1 1( , , ) ( ) ( , ) ( , , )k i i ij i j k k
i i j

Y f X X f f X f X X f X X
<

= = + + + +∑ ∑ KK K K .           (5.3.1.1) 

 
This decomposition exists and is unique.  
 
The term f0 is the mean of Y (a constant). The first order function )( ii Xf  of the decomposition 
represents the effect of the input factor iX acting independently (and generally in a nonlinear 
way) upon the output Y. The second order function ),( jiij XXf  represents the joint effect of the 

input factors iX and jX  upon the output Y. Higher order functions represent the joint effect of the 
input factors upon the output. The last term of the decomposition gives the residual influence of 
all the input factors together. 
 
The HDMR formulation is very efficient whenever the high-order variable correlations are weak, 
allowing the physical model to be captured by the first few low-order terms.  Very often the 
HDMR expression to 2nd order provides a satisfactory description of ),,( 1 dXXfY K= , which 
does not imply that a small number of input factors are significant nor does it limit the nonlinear 
structure of the relationship input-output. 
 
The component functions of the HDMR (5.3.1.1) are a set of projectors that are mutually 
orthogonal to one another (the integral of the product of any pair of them over the whole input 
space is null); their expressions are: 
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Where ]|[ iXYE  is the expectation of Y conditional on iX , [ | , ]i jE Y X X  is the expectation of Y 

conditional on iX  and jX  and so on. The details for obtaining these formulas may be found in 
Sobol (1993). 
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5.3.2. Variance decomposition  
 
For independent input factors and using the fact that any two different components of the HDMR 
decomposition are orthogonal, the variance of the model ),,( 1 dXXfY K=  can be written as: 
 

d
ji

ij
i

i VVVYVarV KK 1)( +++== ∑∑
<

   ,                                   (5.3.2.1) 

 
where 
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           (5.3.2.2) 

 
It can be shown (see for instance Sobol (1993), Jacques (2005)) that the individual terms in 
expression 5.3.1.2 are the variances of the functions of the corresponding indices in the HDMR 
decomposition 5.3.1.1, which means that: 
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5.3.3. Sobol sensitivity indices 
 
Using the variance decomposition 5.3.2.1, Sobol sensitivity indices are defined as: 

• first order sensitivity indices 
 

V
VS i

i =                                                                            (5.3.3.1) 

 
• second order sensitivity indices, which gives the sensitivity of the variance of the 

output to the interaction between the input factors iX , jX  
 

V
V

S ij
ij =                                                                            (5.3.3.2) 

 
• and so on until the order k.  
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We can divide both sides of 5.3.2.1 and obtain a very useful relation: 
 

11 i ij k
i i j

S S S
<

= + + +∑ ∑ KK .                                                   (5.3.3.3) 

 
The interpretation of the sensitivity indices is straightforward, as the sum of all indices is 1 and 
as they are all positive: the larger the sensitivity index (close to 1), the more influent the 
corresponding input (or group of inputs). However, the number of all these indices is 12 −d  and 
when the number of input factors is too large their computation and interpretation becomes 
impossible. This is why Homma and Saltelli (1996) introduced the total sensitivity indices which 
assess the sensitivity of the variance of the output with respect to the standalone and every 
interaction of the considered input factor, by: 
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.                                                      (5.3.3.4) 

 
For a model with three input factors, we have 123131211

SSSSST +++= , and similar expressions 
for the two other total indices. There is a simpler definition of the total indices: 
 

V
VS i

Ti

−−=1 ,                                                          (5.3.3.5) 

 
where ])|[( ii XYEVarV −− =  represents the variance explained by all the factors except iX . This 
definition makes the total indices as easy to estimate as the first order indices. 
 

5.3.4. Example : the Ishigami function 
 
The Ishigami function is defined in Ishigami and Homma (1990) as:  
 

1
4
32

2
1 sinsinsin XBXXAXY ++= , 

 
with all input factors independent and following uniform distributions in the interval (-π, π), i.e. 

),(~ ππ−UX i . 
 
Taking into account expressions 5.3.1.1 and 5.3.1.2, the HDMR decomposition the Ishigami 
function is as follows: 
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The three non zero functions, ),( ),( ),( 31132211 XXfXfXf , if the Ishigami function are 
represented in figure 5.3.4.1. 
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Figure 5.3.4.1.- Representation of the functions forming the HDMR decomposition of the Ishigami 
function. 
 
 
This leads to the following expressions for the variances 
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the other variances being equal to 0. 
 



  
 

 
57

For the case 7=A  and 1.0=B  (which is the one presented in Ishigami and Homma (1990)) the 
values for the previous variances are 8446.13  ;3737.3  ;125.6  ;3459.4 1321 ==== VVVV  and the 
values for the sensitivity indices are: 

• first order sensitivity indices: 
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VS                                 (5.3.4.1) 

 
• second order sensitivity indices:  
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• third order sensitivity index: 
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• total sensitivity indices: 
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If we only compute the first order indices, the effect of 3X is not visible and we can also 
conclude that 24% of the variance is due to interactions. 
  

5.3.5. Estimation of the sensitivity indices 
 
The computation of Sobol indices is based on the computation of the variances of conditional 
expectations, which are very time consuming. The following methods are generally used in this 
purpose: 

• Sobol/Saltelli methods 
•  FAST (Fourier Amplitude Sensitivity Test) / E (extended) FAST method / Random 

balanced design method 
• Correlation ratios 
• McKay method 
• Alternatively, a response surface may be built for the initial model and the Sobol 

indices may be either analytically computed or estimated for the response surface. 
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5.3.5.1. Sobol/Saltelli estimation method 
 
This method, due to Sobol (1993) and addressed by Archer et al. (1997), Saltelli (2002), allows 
the computation of all the terms in the variance decomposition 5.3.2.1.  
Let us consider a sample of size n of the input vector, nkkdk xx ,,11 ),,( KK = . The expectation f0 and 
the variance V of Y are estimated as usual by: 
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To estimate the first order sensitivity indices we need to estimate ])|[( ii XYEVarV = . This 
variance can be written under the form : 
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(using the fact that ][]]|[[ YEXYEE i = ) . The quantity ][YE  is estimated by 5.3.5.1.1, and for 

iU , Sobol (1993) has given the following estimation: 
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where nkkdk xx ,,11 ),,( KK =′′  represents a second sample of size n of the input vector and the 
conditioning is taken into account by “resampling” all the variables except kix . 
 
The first order sensitivity indices are then estimated by 
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In the same way, for the second order sensitivity indices, the conditional variance is written as 
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and the quantity ijU is estimated by  
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The second order sensitivity indices are then estimated by 
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with 2

0̂
ˆˆ fUV ii −= . The procedure continues for the estimation of all the indices.  The total 

sensitivity indices are estimated by  
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with  
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Saltelli (2002) extends the method such that the number of n(2d+1) model evaluations needed to 
estimate all the first order and total indices is reduced to n(d+2). 
 
Example (The Ishigami function continued) 
 
For the Ishigami function we get, using the package sensitivity in R: 
 

• with Sobol method for 1000=n : 7000 model evaluations for estimation of 6 indices 
 

076.0ˆ ,1533.0ˆ ,0076.0ˆ ,025.0ˆ ,439.0ˆ ,3754.0ˆ
231312321 ====== SSSSSS           (5.3.5.1.10) 
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Figure 5.3.5.1.1.- First and second order sensitivity indices and their 95% confidence interval for 
Ishigami function (Sobol method) 
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• with Saltelli method for 1000=n : 5000 model evaluations for 6 indices 
 

226.0ˆ ,434.0ˆ ,5.0ˆ ,043.0ˆ ,4289.0ˆ ,3128.0ˆ
321321 ====== TTT SSSSSS        (5.3.5.1.11) 
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Figure 5.3.5.1.2.-  First order and total sensitivity indices and their 95% confidence interval for Ishigami 
function (Saltelli method) 
 
 

5.3.5.2. Estimation by FAST method 
 
This method is due to Cukier et al. (1973, 1975, 1978) and Schaiby and Shuler (1975) and 
different algorithms have been developed in Koda et al. (1979), and Saltelli and Bolado (1998). 
This method is based on the fact that it is possible to convert the k-dimensional integrals defining 
the variances in the variance decomposition 5.3.2.1 into one-dimensional integrals, by using the 
transformation functions , 1,...,iG i k= defined as: 
 

))(sin( sGx iii ω=                                                     (5.3.5.2.1)                        
 

where s is a scalar variable ] [ππ ,−∈s  and }{ iω  is a set of integer angular frequencies.  
Cukier et al showed (using the properties of Fourier series) that for properly chosen iω and iG , 
the expectation and the variance of Y can be approximated respectively by: 
 

∫−==
π

ππ
dssfYEf )(

2
1][0                                               (5.3.5.2.2) 

 

∑

∑∫
∞

=

∞

−∞=−

+=

+−+≈−=

1
22

2
0

2
0

222
0

2

)(2            

)()()(
2
1)(

j jj

j jj

BA

BABAfdssfYVar
π

ππ                (5.3.5.2.3) 



  
 

 
61

 
with 1 1( ) ( (sin( )),..., (sin( )))k kf s f G s G sω ω=  and jj BA  , the Fourier coefficients of the cosine and 
sine series: 
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2
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2
1 .                   (5.3.5.2.4) 

 
Cukier et al. (1973) showed that the part of the variance due to one input factor iX is the sum of 
the squares of the Fourier coefficients due to the angular frequency iω and its harmonics: 
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The sensitivity iS index is then defined as: 
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Finally, Saltelli and Bolado (1998) have proved that the sensitivity indices defined by the FAST 
method are equivalent to the ones defined by Sobol.  
 
However, in order to use the formula 5.3.5.2.6, several conditions have to be fulfilled: 
 
 a bound for the infinite sum in 5.3.5.2.5 has to be fixed; it is denoted by M (Cukier et al. 

(1975) have empirically shown that a good compromise between a good quality of the 
indices and their estimation cost is M = 4 or M = 6) 

 the functions Gi have to be chosen; the initial choices were given in Cukier et al. (1973) and 
in Koda et al. (1979) respectively 

 
0(sin( )) exp( sin( ))i i i i i ix G s x sω ν ω= =                                   (5.3.5.2.7) 

 
0(sin( )) (1 sin( ))i i i i i ix G s x sω ν ω= = +                                    (5.3.5.2.8) 

 
 the choice of the angular frequencies iω such that are free of interferences up to a certain 

order (here up to order 4). These frequencies are changing with the number of input 
variables and sets of such frequencies are given in Schaibly and Shuler (1973) for example 
and are reproduced in table 5.3.5.2.1. 

 the sampling of the variable [,] ππ−∈s , for the computation of the Fourier coefficients 

jj BA  , has to respect the Nyquist-Shannon sampling theorem (i.e. the sampling frequency 
should be at least twice the maximal frequency of the function to be sampled); if we denote 
by Ns the size of this sample, then its minimal value should be )max(2 is MN ω> . However, 
Cukier et al. (1975) showed that there is no significant gain in accuracy in the calculation of 
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the Fourier coefficients for sample sizes beyond )max( is MN ω≈ . In table 5.3.5.2.1 we also 
present, for each set of angular frequencies, the minimal number of simulations to be 
performed Ns. 

 

  
Figure 5.3.5.2.1.- Example of  FAST sampling in 2 dimensions, with a set of frequencies equal to {11, 
21} and Ns=691; (a) using formula 5.3.5.2.7; (b) using formula 5.3.5.2.8.  
 
 

Table 5.3.5.2.1.- Set of frequencies and corresponding minimal sample size, based on the formula 
4   ,1)max( =+= MMN is ω . 

Number of 
input factors 

Set of frequencies { iω } Minimal 
sample size Ns 

5 {11, 21, 27, 35, 39} 157 
6 {1, 21, 31, 37, 45, 49} 197 
7 {17, 39, 59, 69, 75, 83, 87} 349 
8 {23, 55, 77, 97, 107, 113, 121, 125} 501 
9 {19, 59, 91, 113, 133, 143, 149, 157, 161} 645 
10 {25, 63, 103, 135, 157, 177, 187, 193, 201, 205} 821 
11 {41, 67, 105, 145, 177, 199, 219, 229, 235, 243, 247} 989 
12 {31, 87, 113, 151, 191, 223, 245, 265, 275, 281,289, 

293} 
1173 

13 {23, 85, 141, 167, 205, 245, 277, 299, 319, 329, 335, 
343, 347} 

1389 

14 {87, 133, 195, 251, 277, 315, 355, 387, 409, 429, 
439, 445, 453, 457} 

1829 

15 {67, 143, 189, 251, 307, 333, 371, 411, 443, 465, 
485, 495, 501, 509, 513} 

2053 

16 {73, 169, 245, 291, 353, 409, 435, 473, 513, 545, 
567, 587, 597, 603, 611, 615} 

2461 

17 {85, 145, 241, 317, 363, 425, 481, 507, 545, 585, 
617, 639, 659, 669, 675, 683, 687} 

2749 

18 {143, 229, 289, 385, 461, 507, 569, 625, 651, 689, 
729, 761, 783, 803, 813, 819, 827, 831} 

3325 

19 {149, 275, 361, 421, 517, 593, 639, 701, 757, 783, 
821, 861, 915, 935, 945, 951, 959, 963} 

3853 
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Application example (level_E test case) 
 

A study has been performed in order to compare results obtained via regression based techniques 
and via FAST. This study is based on two samples, a simple random sample of size 459 and a 
FAST sample of size 323 (one half of the suggestion made in table 5.3.5.2.1, though in 
agreement with some authors, as for example Koda et al. (1979)). The former was used to 
estimate sensitivity indices based on regression models (SRRCs) and CSM plots, while the latter 
was used to estimate variance-based sensitivity indices (first order effects contributions to the 
variance of the output variables). Three output variables have been considered in this study, one 
of them is dynamic (the dose over time), while the others are scalar responses (the peak dose and 
the time to the peak dose).  
 
Regarding the dose over time, regressions based on the raw values never reached a coefficient of 
determination (R2) above 0.35, and most of the time it was between 0.10 and 0.20, see figure 
5.3.5.2.2. This fact makes very limited the validity of this regression model to explain the 
behaviour of the dose over time. Figure 5.3.5.2.3 shows the results of the regressions based on 
the ranks of the values. According to this analysis it is clear that V(1) is the most important model 
input. In fact, there is a clear correlation between the R2s  and the absolute value of the SRRC 
associated to V(1).  The rest of the inputs are practically non-influential (only L(1) reach at early 
time steps values around –0.30).  
 
 

 
 

 

Figure 5.3.5.2.2.- SRCs and R2 versus time for the 
dose over time (raw values). Level_E test case. 

Figure 5.3.5.2.3.- SRRCs and R2 versus time for 
the dose over time (ranks). Level_E test case. 

 
 
Figure 5.3.5.2.4 shows the results of the FAST analysis. The results obtained are partially 
different from the ones provided by regression analysis. In this case, the two most relevant model 
inputs are W and V(1), in this order except at early and late time. The other inputs are quite less 
important. This figure does also show that first order effects are able to explain between 15 and 
25% of the variability, depending on the time. These results do also show that the behaviour of 
the dose over time in this test case is complex, since a large fraction of the variability (more than 
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75%) is due to interactions. Figure 5.3.5.2.5 shows the maximum distance to the diagonal 
obtained when computing CSM plots for the dose over time and all the input parameters. Dm 0.05 
is also provided for each time to know what values are statistically significant and which are not. 
Results reported in this figure do essentially agree (though there are some differences) with the 
ones reported by FAST: W is the most relevant parameters at intermediate times while V(1) 
predominates at early and late times, being their effect statistically significant at all times. The 
rest are essentially irrelevant except during short periods.  
 
 

  
Figure 5.3.5.2.4.- Variance based first order 
sensitivity indices obtained with FAST for the dose 
over time. Level_E test case. 

Figure 5.3.5.2.5.- Sensitivity indices obtained with 
the CSM plot for the dose over time. Level_E test 
case. 

  
Figure 5.3.5.2.6.- CSM plot for the peak dose with 
bands set at α=0.05. Level_E test case. 

Figure 5.3.5.2.7.- CSM plot for the time to the 
peak dose with bands set at α=0.05. Level_E test 
case. 

 
 
Figures 5.3.5.2.6 and 5.3.5.2.7 show respectively the CSM plots for the peak dose and the time to 
the peak dose. Tables 5.3.5.2.2 and 5.3.5.2.3 show the FAST results (only first order effects), 
regression analysis results (R2 and SRRCs) and CSM results (values of Dm for each input 
parameter) for the same outputs. The symbol ‘*’ in the CSM results column means statistically 
significant result with α=0.05. We can see the very good agreement between all the techniques 
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when working on these output variables, at least in the identification of most relevant parameters 
and their order of importance. It is also remarkable the large fraction of the variability of these 
outputs that is explained by first order effects (47% for the peak dose and almost 70% for the 
time to the peak dose). 
 

 
Table 5.3.5.2.2.- FAST results (first order effects), regression analysis results (R2 and SRRCs) and CSM 
results (values of Dm for each input parameter, α=0.05) for the peak dose. 
 Sensitivity measure 
Input parameters  SRRC Fraction of σ2 Dm 
T 0.000 (9) 0.001 (8) 0.116 (8)
k 0.003 (8) 0.000 (9) 0.064 (9)
V(1) 0.639 (2) 0.167 (2) *0.407 (2)
L(1) -0.118 (4) 0.006 (6) 0.145 (6)
R(1) -0.188 (3) 0.024 (3) *0.201 (3)
V(2) 0.044 (6) 0.018 (4) *0.151 (5)
L(2) -0.029 (7) 0.002 (7) 0.133 (7)
R(2) -0.048 (5) 0.009 (5) *0.195 (4)
W -0.747 (1) 0.244 (1) *0.454 (1)
 R2=0.957 1st order effects total 

contribution to σ2=0.471 
Dmα=0.147 

 
Table 5.3.5.2.3.- FAST results (first order effects), regression analysis results (R2 and SRRCs) and CSM 
results (values of Dm for each input parameter, α=0.05) for the time to peak dose. 
 Sensitivity measure 
Input parameters  SRRC Fraction of σ2 Dm 
T 0.005 (9) 0.000 (7.5) 0.063 (4)
k -0.008 (7) 0.000 (7.5) 0.046 (5.5)
V(1) -0.885 (1) 0.501 (1) *0.395 (1)
L(1) 0.304 (2) 0.099 (2) *0.155 (3)
R(1) 0.255 (3) 0.082 (3) *0.172 (2)
V(2) -0.113 (4) 0.001 (5) 0.042 (8.5)
L(2) 0.075 (6) 0.000 (7.5) 0.046 (5.5)
R(2) 0.090 (5) 0.004 (4) 0.043 (7)
W -0.006 (8) 0.000 (7.5) 0.042 (8.5)
 R2=0.955 1st order effects total 

contribution to σ2=0.687 
Dmα=0.076 

 
 

Figure 5.3.5.2.8 shows the CSM plot for the dose at 105 years. This plot shows that the impact of 
W and V(1) on the mean of the output is not the same in all their regions, clearly the lowest 
values of W contribute more to the mean of the dose than its largest values, while intermediate 
values of V(1) are the ones that really affect the mean of the dose at that time. This result is in 
agreement with the results provided by FAST (figure 5.3.5.2.4); both inputs are identified as the 
only important ones and in the same order (Dm(W)=0.4798, Dm(V(1))=0.2715), no other input 
parameter reaches Dmα (α=0.05). Additionally, the CSM line for V(1) explains the very low value 
of R2 at 105 years in figure 5.3.5.2.3; this line shows the clear lack of monotonocity in the 
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relation between this input and the output since the largest values of the output are obtained for 
intermediate values of V(1) (steepest region of the CSM line in average). Many other CSM plots 
realised for the dose at different time steps, which are not in this report, showed agreement with 
the results of FAST provided in figure 5.3.5.2.4. 
 

 
Figure 5.3.5.2.8.- CMS plot for the dose at 105 years with bands set at α=0.05. Level_E test case. 
 

 
5.3.5.3. Estimation by EFAST method 

 
For the total sensitivity indices, Saltelli et al. (1999) introduced the extended FAST (EFAST) 
method, where the part of variance due to all the variables except Xi is the sum of the squares of 
the Fourier coefficients due to all the angular frequency i~ω different from iω , leading to: 
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Another difference from the initial FAST method is that the functions Gi have been chosen such 
that they are “filling” in a more suitable way the input space:  
 

))(arcsin(sin1
2
1))(sin( ssGx iiii ω

π
ω +==                                   (5.3.5.3.2) 
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2
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π
ω ++==                               (5.3.5.3.3) 

 
where iϕ is a random phase chosen uniformly in [0, 2π[. Moreover, the choice of the angular 
frequencies iω  is no longer constrained by the “no interferences up to a certain order” rule.  
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For a given variable Xi, the pair of indices (Si, STi) is computed simultaneously; the only 
constraint is that the angular frequency iω  (corresponding to xi) should be large compared to the 
ones corresponding to the rest of the variables (for instance iω =124, i~ω =1). 
 

   
(a) (b) (c) 

Figure 5.3.5.3.1.- Example of  EFAST sampling in 2 dimensions, with a set of frequencies equal to {11, 
21} and Ns=691; (a) using formula 5.3.5.3.2; (b) using formula 5.3.5.3.3 with one single random phase; 
(c) using formula 5.3.5.3.3 with two random phases. 
 
 
It should be emphasized that when computing sensitivity indices with FAST method, it is not 
possible to compute tolerance intervals (as it is the case when using Sobol method) because the 
method is deterministic. The number of runs is equal to nxd for estimating 2d sensitivity indices. 
 
Example (the Ishigami function continued) 
 
For the Ishigami function we get, using the package sensitivity in R, for 1000=n : 3000 model 
evaluations for estimation of 6 indices 
 

2391.0ˆ ,47.0ˆ ,5506.0ˆ ,0ˆ ,442.0ˆ ,3077.0ˆ
321321 ====== TTT SSSSSS .               (5.3.5.3.4) 
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Figure 5.3.5.3.2.-  First order and total sensitivity indices for Ishigami function using extended FAST 
method. 
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5.3.5.4. Estimation by random balanced design (RBD) 

 
The RBD method (see Tarantola et al. (2006) or Saltelli et al. (2008)) is similar to FAST or 
EFAST. It uses the parametrization ))(sin( sGx iii ω= , ] [ππ ,−∈s  the scalar variable and }{ iω  is 
the set of integer angular frequencies (the function G may be taken as in expressions 5.3.5.3.2 or 
5.3.5.3.3). The scalar variable is then discretized. The main difference with FAST – EFAST is 
that the input space is explored using the same frequency ω, to avoid the use of a complicated 
algorithm for choosing the different frequencies. Doing so, the set of discretized input 
parameters xi (i.e. the design) is no longer space-filling. Therefore, random permutations of the 
coordinates of those points are taken in order to generate a set of scrambled points that cover the 
input space. An example of such “scrambled” points is shown in figure 5.3.5.4.1.  The model is 
then evaluated at each design point. To compute the first order sensitivity index Si, the output y is 
re-ordered in increasing order of the values taken by the factor Xi. The Fourier spectrum of the 
output is calculated for the frequencies {ω, 2ω,..., Mω} to the estimate the sensitivity index Si.  
The procedure is repeated for all the other factors to obtain all the first order sensitivity indices. 
 
The main drawback of this method is that it only computes the first order sensitivity indices.  
 
Its main advantages with respect to (E)FAST is that there is no minimum sample size to avoid 
interference problems and no special algorithm for providing the free interference set of 
frequencies. Also, the number of harmonics in the spectrum (i.e. M) may be increased without 
affecting the size of the sample. 
Another advantage is that confidence intervals could be computed for those indices. 
 
The number of runs is equal to n for estimating d sensitivity indices. 

 
Figure 5.3.5.4.1.- Example of RBD sampling in 2 dimensions, with ω = 1 and Ns=100; (4.3.35) have 
been used for generating the design .  
 
 
Example (the Ishigami function continued): 
 
For the Ishigami function we obtain with this method for 1000=n  (1000 model evaluations for 
estimation of 3 indices) 019.0ˆ ,454.0ˆ ,319.0ˆ

321 === SSS . These results are very similar to the 
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theoretical ones (5.3.4.1) and to the ones obtained using Sobol’s or Saltelli’s method (5.3.5.1.10)  
and EFAST method (5.3.5.3.4).  The computations have been made using R. 
 
Other variance decomposition based methods 
 
McKay (1997) also gives a method of estimation of the variances Var(Y) and ])|[( iXYEVar  
based on replicated Latin Hypercube Sampling, which can be used to estimate the first order 
sensitivity indices. Hofer (1999) uses correlation ratios to estimate first order sensitivity indices. 
The output sample is divided in subsamples according to a partition of each input sample. The 
output mean is computed for each subsample and the variance of these means divided by the 
variance of the output is the first order sensitivity index for that input parameter. Correlation 
ratios are the square root of first order sensitivity indices computed in this way.     
 

5.4. Distribution sensitivity methods 
 
Many of the uncertainties that appear in a PA are epistemic (lack of knowledge). The assessment 
of these uncertainties is done most frequently via expert judgement. In many cases the experts 
show some reluctance to provide accurate distributions, as is the case of underconfident experts. 
In other situations they acknowledge that the distributions could be slightly different from the 
ones they are actually providing. One of the targets of SA is to measure the potential impact of 
those changes on the distributions of the outputs. 
 
The trivial solution for this problem is to run the code a number of times under the original or 
main distribution, let us say n times, and another number of times under the alternative 
distribution, let us say n’ times, and to compare the results (mainly means, distribution functions 
and success or failure probabilities). In the case of k input parameters we need to run n+kn’ times 
the code to measure the influence of changing the input distribution of each input parameters. 
This problem becomes a combinatorial problem as we try to measure the effect of changing 
simultaneously the distribution of two or more input parameters. Certainly this is not an efficient 
way to measure the effect of input distribution changes on the output distribution. 

 
In the following pages we will describe two methods available in the statistics literature to 
measure the influence of input distribution changes in the means and the distribution functions of 
the output variables. These two methods (the weighting method and the rejection method) were 
developed by Beckman and McKay (1987). This problem did also arise within the Probabilistic 
Safety Assessment Code Use Group (PSAG and formerly PSAC), in the PA area. Some of the 
participants in that group proposed solutions similar to the weighting method, see OECD-NEA 
(1993 and 1997) and Alonso (1993). In fact, the solution proposed by Alonso is a particular case 
of the method proposed by Beckman and McKay (restricted only to uniform and log-uniform 
distributions).   

 
The first method developed by Beckman and McKay is suitable for measuring the effect on the 
mean of the output and resembles a variance reduction technique, importance sampling. The 
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second method is suitable for measuring the effect on the distribution function and is based on 
the acceptance/rejection sampling technique to sample from distributions with no analytical 
inverse cumulative distribution function. The second method is more relevant to the estimation 
of the change in the success probability of a passive system, though the first one does also 
provide some additional worthy information. 

 
First we will define the problem, second we will show the foundations of these two methods and 
we also will write down some ideas about their efficiencies. We will also provide some ideas 
about their actual implementation. Finally, an application example will be shown. 

 

5.4.1. The problem 
 
Let us consider a k components vector of input parameters X. Let us assume that two different 
distribution functions f1(x) and f2(x) may be assigned to that input parameter vector. Let us also 
assume that the first one is the reference one and the second one is the one we are addressing for 
sensitivity. For simplicity, let us consider only one output variable Y. Since X is a random vector, 
Y will also be random and its distribution function will depend on the distribution function of X. 
Let us call F1(y) and F2(y) to the distribution functions of Y when X follows the distributions 
f1(x) and f2(x) respectively. 
 

5.4.2. The weighting method 
  
The weighting method resembles importance sampling. In the case of importance sampling the 
problem is to estimate the mean of a reference random variable as accurately as possible, and the 
proposed solution is to find an ancillary random variable with the same mean and a smaller 
variance than the reference variable. In our case we have both, the reference distribution and the 
ancillary one, so that we can apply the method for our purposes. This method is only adequate 
for estimating changes in the mean. 
 
Let us consider the random variable Y’ defined as )())()(()()()(' 12 xxxxxx YffYwY == . Let us 
demonstrate that the mean of Y’, when sampling X from f1(x), is the same as the mean of Y when 
sampling X from f2(x). In other words, let us demonstrate that E1(Y’(X))=E2(Y(X)), where the 
sub-indices  indicate what input vector distribution function we are using to compute the mean. 
The only requirement we are going to impose is that the support R2 of f2(x) is contained in the 
support R1 of f1(x). 
 

[ ] xxxxxxxxxxxX dfYdfYffdfYYE
RRR ∫∫∫ ===

111

)()()()()()()()('))('( 211211  .      (5.4.2.1) 

 
 Since 12 RR ⊂ , and f2(x) is null outside 2R , the last integral in 1R  and in 2R  are the same 
so that we can write 
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))(()()()()())('( 2221
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=== ∫∫  .                            (5.4.2.2) 

 
 From a practical point of view, this theoretical result means that a way to estimate the 
mean of Y under f2(x) is to get a sample of Y under f1(x) and to multiply each one of those 
sampled value of Y under f1(x) by its corresponding weight w(x)= f2(x)/ f1(x). The arithmetic 
mean of those sampled values multiplied by their corresponding weights is an unbiased estimate 
of E2(Y(X)). In the following lines there is the procedure to be followed: 
 

• Step 1  Obtain a sample of size n of the input random vector under the reference 
distribution: X1, X2, …, Xn. Their actual values will be x1, x2, …, xn. 

• Step 2  Run the code for those n sets of inputs in order to get the corresponding 
sample of the output variable: Y1, Y2,…, Yn. Their actual values will be y1, y2,…, yn. 

• Step 3  Weight the sample with the corresponding weights, getting for each 
actually sampled value yi=y(xi) the corresponding value y’(xi)= y(xi)w(xi)= y(xi) f2(xi)/ 
f1(xi). 

• Step 4  Estimate E2(Y(X)) through: 
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5.4.2.1. The efficiency of the weighting method 

 
A general problem in statistical estimation is the determination of the accuracy of the estimates 
generated with a given method. In the general case the accuracy of the estimates is measured 
with their variance. The larger the variance is, the smaller the accuracy is. In our case we can 
compare the accuracy or variance of the estimator of the mean of Y under the reference 
distribution using a random sample, 1μ̂ , with the accuracy of the proposed estimator 2μ̂  (formula 
5.4.2.3) for estimating the mean of Y under the sensitivity distribution.  
 
Let us define the efficiency of the second estimator with respect to the first as the quotient of the 
variance of the first divided by the variance of the second. Since both estimators are simple 
arithmetic averages of two different magnitudes, Y and Y’, this efficiency will be equal to the 
quotient of the variances of Y and Y’. The consequences of this fact are that, depending on the 
characteristics of Y’, we will get efficiencies larger or smaller than one. In other words, 2μ̂  could 
be more accurate or less accurate than 1μ̂ . This could lead to the surprising result that, though we 
sampled under the conditions of f1, our estimate for the mean of Y under f2 could have less error 
than the estimate for the mean of Y under f1. 
 
In order to understand this phenomenon, let us see the following example. Let us assume that we 
have a very simple model that depends on only one input parameter X. Let us assume that the 
experts provided as their best estimate for this model an exponential distribution with mean 10. 
Let us assume that we know the closed solution of our model and its analytical form is exactly 
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the same as the former exponential density function. Let us also consider that our interest is to 
study the effect of changing the mean of the input distribution to any other value between 2 and 
50, keeping the type of distribution (exponential). All these assumptions may be resumed as 
 

0.1           )(1 == − λλ λxexf  
0.1            )( == − λλ λxexy  

       [ ]5.0,02.0        )( 222
2 ∈= − λλ λ xexf  . 

 
We can see that in this case Y’(x)=f2(x). Moreover, under these assumptions it is quite easy to 
demonstrate that the efficiency of the weighting method proposed by Beckman and Mckay is 
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Figure 5.4.2.1.1 shows the reference input probability density function f1 and the response of the 
computer code Y, the same function in this example (the continuous line f1(x)=Y(x)), same 
function in this example; and the two extreme cases for f2 among the infinite set considered (λ2 
between 0.02 and 0.5). For each one of those infinite alternative distributions f2, the 
corresponding function Y’(x) is equal to f2. Figure 5.4.2.1.2 shows the efficiency of the weighting 
estimator with respect to the estimator of the mean of Y under f1. A straightforward conclusion 
from that plot is that the smaller λ2 (the larger the mean of X) the larger the efficiency. 
Efficiencies are larger than 1 for λ2<0.1 and smaller than 1 for λ2>0.1. For λ2=0.02, the 
efficiency is approximately 100; in that case we need samples 100 times larger to estimate the 
mean of Y under the reference distribution that to estimate the mean of Y under this alternative 
distribution with the same accuracy. The most surprising fact of this result is that we are using a 
sample of f1! 
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Figure 5.4.2.1.1.- Input reference distribution, model 
(same curve), and extreme alternative input 
distributions (equal to the corresponding Y’ 
functions). 

Figure 5.4.2.1.2.- Efficiency of the weighting 
estimator, for the example with the exponential 
distributions, as a function of λ2 (that represents the 
alternative distribution). 
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The reason for such a surprising result comes from the fact that, for all the functions Y’(x), X 
follows the same law of probability, but the range of Y’ (remind that it is equal in this example to 
the corresponding f2) decreases dramatically as λ2 decreases, so that the variance of Y’ decreases 
as λ2 decreases, producing the result shown in figure 5.4.2.1.2. It is quite interesting to check that 
better results are obtained as the variance of f2 increases. 
  
Beckman and Mckay (1987) provide further studies about the efficiency of this method for the 
cases of normal and beta distributions, discussing about the origin of the obtained results. 
 

5.4.3. The rejection method 
 
The rejection method is based on the acceptance/rejection sampling method for random variables 
with cumulative distribution function with no analytical inverse function, see Johnson (1987) and 
Fishman (1996).  
 
There are two conditions for the application of this method: First, as in the previous method, the 
support of f2(x), R2, must be contained in the support of f1(x), R1; and second, the quotient 
f2(x)/f1(x) must be bounded. Let us assume that the bound is M; in other words, 
( ) 212    )()( R Mff ∈∀≤ xxx . In the following lines there is the procedure to be followed: 
 

• Step 1  Obtain a sample of size n of the input random vector under the reference 
distribution: X1, X2, …, Xn. Their actual values will be x1, x2, …, xn. 

• Step 2  Run the code for those n sets of inputs in order to get the corresponding 
sample of the output variable: Y1, Y2,…, Yn. Their actual values will be y1, y2,…, yn. 

• Step 3  For each sample xi, take a sample of the uniform distribution Vi between 0 
and Mf1(xi). 

• Step 4  Retain in the sample the corresponding output value Yi=yi if the realisation 
vi of Vi is less or equal to f2(xi), otherwise reject that value from the sample. 

• Step 5  Consider the values of Y remaining in the sample as a random sample of Y 
under f2(x), and use this sample of size k≤n to build up an empirical distribution function 
that estimates the actual distribution function of Y under f2(x). Each step in that empirical 
distribution function will have a height 1/k. 

 
The objective of sampling Y under f1(x) and under f2(x) is to get an estimate of the probability of 
failure of the system under those different circumstances. If we assume that the system fails 
when the variable Y exceeds the value y0, our estimate of the probability of failure will be the 
number of observations of Y that exceed such a value divided by n for the reference case and 
divided by k in the sensitivity case. 
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This procedure for estimating the distribution function of Y under f2(x) produces an unbiased 
estimator for that function since we are applying strictly the acceptance/rejection method for 
sampling  X under f2(x) using as an ancillary function f1(x). The acceptance/rejection method 
provides a random sample of X under f2(x). This fact guaranties that the transformation of this 
sample through the model provides a random sample of Y under f2(x). This sample may be used 
in the usual way to provide any unbiased estimator related to Y, in particular the empirical 
distribution function. 
 

5.4.3.1. The efficiency of the rejection method 
 
In this case Beckman and McKay propose as a measure of efficiency the probability that a 
realisation of the random vector X under f1(x), x, be accepted as a random variate under f2(x). 
This probability is 1/M since   
 

MdffVPPeff
R

1)()|)(()retained is  random a( 12
1

=≤== ∫ uuuuX  .             (5.4.3.1.1) 

 
 The intuitive justification for this result comes from the fact that the quotient between the 
hypervolume under Mf1(x) and the hypervolume under f2(x) is M, so that, in the average, 
according to the acceptance criterion, only a fraction 1/M of the sample obtained under f1(x) will 
remain as a sample under f2(x). A detailed demonstration may be found in Beckman and McKay 
(1987). 
 
Let us revisit the example of the exponential functions shown in section 5.4.2.1. If we try to 
apply the rejection method to that case, the first thing we find is that the method may not be 
applied to any alternative distribution with λ2<0.1 since the quotient f2(x)/f1(x) must be bounded 
and that is not the case under these conditions. For all the other cases (λ2>0.1), it is quite easy to 
show that the efficiency is 
 

2λλ=eff   .                                                                     (5.4.3.1.2) 
 

 Let us consider now the alternative exponential distribution function f2(x) with λ2=0.2. 
We have sampled 50 observations from f1(x) and we have applied the rejection method. Figure 
5.4.3.1.1 shows the three essential functions in this method for the example case: f1(x), 2 f1(x) 
and f2(x). It is convenient to remember that in this example f1(x) and Y(x) are identical functions. 
The 50 values sampled from f1(x) are the x component of the points in figure 5.4.3.1.1. The y 
components of those points are the corresponding realisations of the uniform random variables 
Vi. In agreement with the method, only those x values corresponding to points below f2(x) (dotted 
line) are retained as valid x values under f2(x). The values of Y for those x values are those that 
will be considered to build up the distribution function for Y. Figure 5.4.3.1.2 shows the 
empirical distribution function for Y under f1(x) (solid line) and the empirical distribution 
function for Y under f2(x) (void line).  
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Figure 5.4.3.1.1.- f1(x),  f2(x) and 2f1(x). The output 
variable of this model coincides with f1(x).  

Figure 5.4.3.1.2.- Empirical distribution function for Y 
under f1(x) and empirical distribution function for Y 
under f1(x), using the sample obtained under f1(x). 

 
 
A careful look at figure 5.4.3.1.1 shows that in this sample 25 points are above f1(x) and the rest 
are below it. This sample efficiency is exactly the same as the predicted efficiency, though it 
could be different in another sample. As a consequence of this fact, the empirical distribution 
function for Y under f2(x) in figure 5.4.3.1.2 will have only 25 steps, each one with height 1/25. If 
we consider that the system fails as soon as Y is larger than 0.09, by inspection of figure 5.4.3.1.2 
we easily see that the estimate for the probability of failure under the reference distribution is 
6/50=0.12, while the estimate for the probability of failure under the alternative distribution is 
6/25=0.24. The estimate of that probability increases by a factor 2. This result could be expected 
since f1(x) puts more weight on the small values and less weight on the large values of X than 
f2(x). Nevertheless, Y(X), the model itself, is monotonically decreasing, so that a shift towards 
smaller X values implies a shift towards larger Y values. This example is for a model with only 
one input parameter, but its application to a multi-parameter model is straightforward. 
 
Both methods are suitable for measuring the sensitivity to the change in one, several or all the 
input parameters, though with some restrictions (if a set of the input parameters are mutually 
dependent, the sensitivity to a change in one subset may not be addressed separately). 
 

5.4.3.2. An extension of the rejection method 
 
As we have seen in the previous section, the main problem of the rejection method is its potential 
low efficiency due to discarding many observations from the sample under some circumstances. 
A way to increase this efficiency is repeating many times the process described in section 5.4.3 
and averaging. If we do so, we will arrive at an output estimated distribution function under the 
alternative input distribution (f2(x)) that attributes the following probability to each output value 
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Application example of the rejection method (extended) 
 
The rejection method (extended according to section 5.4.3.2) was applied to assess the changes 
in the reliability of a passive safety system in an advanced nuclear power reactor. Several input 
parameters were affected by epistemic uncertain and their uncertainty was characterised via 
probability density functions. All input distributions were allowed to vary their means up to 15% 
up and down. So, if the mean of a given uncertain parameter was 10, the intention of the study 
was to see what were the consequences on the output (pressure in the primary system) of 
changing the mean of the input between 8.5 and 11.5.  
 
Figures 5.4.3.2.1 and 5.4.3.2.2 show the results corresponding to two input parameters: different 
cumulative distributions of the pressure under different input distributions. The system was 
supposed to fail when a pressure of 4 Mpa was exceeded (value 4 in the x-axis). Figure 5.4.3.2.1 
shows the results corresponding to the most influent parameter (input parameter 11). We can see 
the shift towards larger pressures when the mean of the input parameter diminishes (orange 
→blue →purple →green →red). The output distribution under the original input distribution is 
the purple line. Under that hypothesis, the probability of failure of the system was roughly 4%. 
When analysing the spread of that probability under different alternative input distributions we 
can see that it may vary between roughly 2% (orange line) and 11% (red line). Figure 5.4.3.2.2 
Shows the results for a completely irrelevant parameter (input parameter 9); it is practically 
impossible to distinguish the different output distributions. Changing the mean of this input 
parameter has no impact on the output distribution. 

  
Figure 5.4.3.2.1.- Results of the rejection 
(extended) method for an influent input parameter.  

Figure 5.4.3.2.2.- Results of the rejection (exten-
ded) method for an irrelevant input parameter.  

 
 



  
 

 
77

6. Response surface based 
 
The most widely used response surface model is regression, see Iooss et al. (2006), and sections 
5.2.1.3 – 5.2.1.7 in this report. Among the other response surface models, the polynomial chaos 
expansions are quite effective for the sensitivity analysis, because once the coefficients of the 
expansion are estimated, the computation of the Sobol sensitivity indices is straightforward. 
 

6.1. Polynomial chaos expansions 

Polynomial chaos expansions of random functionals are based on the mathematical theory 
developed by Wiener (1938), Cameron and Martin (1947). Their use for uncertainty and 
sensitivity purposes started with the work of Ghanem and Spanos (1991) on the stochastic finite 
element method and ever since they have gained in popularity, especially in the case when the 
physical system under study is computationally expensive, making Monte Carlo simulations 
impossible to use.  

Polynomial chaos consist in expanding the output on an orthogonal basis of polynomial chaos 
denoted by { }kψ :  

)()(
0

xx ∑
∞

=

=
k

kky ψβ .                                                            (6.1.1) 

The orthogonality is associated to the joint probability density function (pdf(x)) of the random 
vector x (the input), i.e. klklklk dpdf δψψψψψ 2)()()()()(),( xxxxxxx == ∫ . As an example, 

for a normally distributed 1-dimensional input, the basis of polynomial chaos is formed by the 
Hermite polynomials  
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The response surface is obtained by approximating the expansion (6.1.1) by a finite sum 
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kky ψβ .                                                           (6.1.2) 

 
The coefficients kβ  are computed as ∫= xxxx dpdfy kk

k
)()()(2

1 ψβ
ψ

. Finally, in order to obtain 

the estimations of these coefficients, a quadrature formula is used. The choice of the quadrature 
method will lead to the choice of the design of experiments, i.e. the values of the input vector 
where the computations with the original model have to be done; it will also give the 
weights jw to be used: 
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Due to the orthogonality being associated to the joint probability density function (pdf(x)) of the 
input, straightforward formulae for the total (V) and partial (Vu) variances are deduced: 
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where U(u) is a set of indices. 
 
The Sobol sensitivity indices can then be computed as the ratio between Vu and V. An important 
remark is that with this method we can compute sensitivity indices up to any order we need to, 
without any computation effort. This allows deciding whether higher order interactions between 
the inputs are significant or not. 
 
Example of transport of a radionuclide in a nuclear waste repository (continued) 
 
For the example of the transport of a radionuclide (129I) in a nuclear waste repository 
(section5.2.1.5), a deterministic design of experience with 737 points (in 6 dimensions) has been 
used for the quadrature method. Sensitivity indices up to the fourth order have been computed 
using the software Petras (http://www-public.tu-bs.de:8080/~petras/software.html). We present 
in table 6.1.1 the values for the total sensitivity indices. 
 
 
Table 6.1.1.- Polynomial chaos expansion sensitivity results for the example of the transport of a 
radionuclide. 

Variable 
name 

Sobol total 
sensitivity indices 

Order of variable 
importance  

Kh1 ST1= 3.51e−01 1 
Kv1 ST2= 3.48e−01 2 
K2 ST3= 2.45e−01 5 
K3 ST4= 2.55e−01 4 
poro ST5= 3.00e−01 3 
de ST6= 1.82e−01 6 

 
 
There is one significant difference between those results and the ones obtained for the regression 
methods previously used, which is the fact that the input variable Kh1 appears as the most 
important one. However, Kv1 and poro which were the most influent ones in the different 
regression methods are the next important ones. Another significant difference is the fact is that 



  
 

 
79

the initial computational effort was quite large for the polynomial chaos expansions: a 
deterministic design of experiments with 737 points has been used (i.e. 737 runs of the numerical 
code), while a random design of experiments (latin hypercube) with only 60 points have been 
used for the regression methods. 
 

6.2. Kriging  
 
Kriging was developed initially by geostatisticians in the 60’s. It’s use in the context of computer 
experiments started with the work of Sacks et al. (1989a). A detailed description of kriging may 
be found in Santner et al. (2003). Kriging is an interpolating method. The kriging model can be 
written in the form  
 

)()()( xxx Zfy += β ,             (6.2.1) 
 

where β)(xf  is the deterministic part (called the trend) and )(xZ is the random part (a centred, 
stationary Gaussian process). The trend takes into account the large scale variations of the 
output, while the random part takes into account its small scale variations. The Gaussian process 
is entirely characterized by its covariance function. The covariance function determines the 
smoothness of the response surface and it depends on k+1 parameters; its form has to be chosen a 
priori (out of a list of possible covariance functions, see Santner et al. (2003)).  
 
The parameters that have to be estimated from the data are the coefficients β of the trend and the 
k+1 parameters of the covariance function. The estimation is done by the maximum likelihood 
method. 
 
As an example, the Gaussian covariance function is defined by: 
 

( ) dd

i iiZ IRhhhC ∈−= ∑ =
any for       )(exp)(

1
22 θσ                  (6.2.2) 

 
where 2

Zσ  and iθ , i=1,…,d  represent the variance and the scale parameters of the Gaussian 
process, have to be estimated from the experiments by maximum likelihood. 
 
One of the main advantages of kriging is the fact the predictor is an interpolator whose 
smoothness depends on the data (via the covariance function) and yet not imposed a priori as in a 
regression method.   
 
The surface response obtained by kriging can be used to compute Sobol sensitivity indices. 
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Example of transport of a radionuclide in a nuclear waste repository (continued)  
 
For the example of the transport of one radio nuclide (129I) in a nuclear waste repository, the latin 
hypercube design with 60 points has been used to estimate the parameters of a kriging model 
with a linear trend. This means that 7 coefficients (denoted 6,...0, =iiβ ) had to be estimated for 

the trend and 7 parameters ( 2
Zσ  and iθ , i=1,…,6 ) for the Gaussian process. Sobol total 

sensitivity indices have been computed. We present in table 6.2.1 the sensitivity results obtained. 
 
 
Table 6.2.1.-  Kriging (with linear trend) sensitivity results for the example of the transport of a 
radionuclide. 

Variable 
name 

Sobol total 
sensitivity indices 

Order of variable 
importance  

Kh1 ST1= 2.37e−06 6 
Kv1 ST2= 9.04e−01 1 
K2 ST3= 3.72e−03 4 
K3 ST4= 4.58e−02 3 
poro ST5= 8.68e−02 2 
de ST6= 9.47e−04 5 

 
 
Again, like in the regression examples, Kv1 and poro are the most influent input variables.  
 

7. Conclusions 
 
A review of most interesting and useful SA techniques in the context of a PA has been done, 
concentrating efforts on screening methods and global methods. Screening methods focus on 
identifying strong functional relations between inputs and outputs, while global methods focus 
on how input uncertainty maps on the output space. 
 
Within screening methods we have focused our attention on classical full factorial and fractional 
factorial methods, Morris’ method and sequential bifurcation. We have found full factorial and 
fractional factorial methods as powerful tools when the number on input parameters is moderate, 
but its applicability cannot be recommended when the number of input factors is very large; in 
those cases methods like Morris’ and sequential bifurcation are more appropriate.  
 
In this study, global methods have been classified as graphic methods, Monte Carlo based 
methods, variance decomposition based methods and distribution sensitivity methods. This 
classification is a bit arbitrary since there are many overlaps among these methods (graphic tools 
may be used with data obtained via Monte Carlo simulation, but they may also be used with data 
obtained under different sampling schemes, as for example the traditional FAST sampling), but 
we have found it useful. 
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Monte Carlo based methods (regression based and Monte Carlo filtering) are quite well known in 
the scientific and technical community. They are simple to use and provide easily interpretable 
results. The main shortcoming of regression-based techniques is the specification, a priori, of a 
given structure for the model under study, which makes less powerful the results. Monte Carlo 
filtering, which allows identifying relations between different regions of inputs and outputs,  is 
not affected by this problem. An important advantage of these methods is that they allow the 
simultaneous use of the same sample (input and output) to perform uncertainty and sensitivity 
analysis, not needing specific additional code runs for each specific analysis. This fact is a strong 
reason in favour of these methods. An important area of research for the next future is the 
adaptation of specific efficient techniques to allow computing variance based sensitivity indices 
using Monte Carlo samples. 
 
Variance based methods provide information about what input factors and what interactions 
among input factors introduce more variability in the output, which made them very powerful 
tools to understand the behaviour of PA models. The main problem with many of these 
techniques is the need of using specific sampling schemes, not appropriate to perform 
simultaneously uncertainty analysis. A large improvement has been achieved during the last 
years to make these methods cheaper in computational terms, though there is still room for 
improvement.  
 
Graphical methods (scatter plots, cobweb plots and contribution to the sample mean plots –CSM 
plots-) are strongly recommended. They provide a lot of information in support of numeric 
sensitivity techniques and illustrate many model features that are not shown by pure numeric 
measures. Additionally, one of them, CSM plots, provides a numeric measure that is itself a 
measure of importance linked to variance based sensitivity indices. This method identifies what 
region(s) of each input variable has/have the strongest impact on the output mean and allows the 
representation, in the same graphic, of may inputs, which facilitates comparing the effect of 
different inputs. The use of cobweb plots in support of Monte Carlo filtering techniques is 
strongly recommended. These techniques do also allow representing the relation between one 
output and several inputs.  
 
Distribution sensitivity techniques have been identified as the mean to check what could be the 
effect on output distributions of changes in the distributions of the inputs. The use of these 
techniques could be very helpful to avoid expensive experiments and expert judgement 
processes.  This would be the case of input parameters whose likely alternative distributions do 
not show an important impact on the output distribution. 
 
The whole set of methods described in this report allow PA modellers to study and get 
information about their model from different perspectives, which allows them to understand 
correctly their models. 
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Annex 1: Level E test model description. 
 
The model under study reproduces the behaviour of a high-level radioactive waste repository and 
the contaminant disposed of. The repository is considered without any geometric complexity, as 
just a point. Engineered barriers are modelled through a containment time during which there is 
no release. After the containment period, the contaminant starts releasing at a fractional constant 
rate. Only one radionuclide is considered in this study, 129I. This radionuclide was selected 
because of its relevance in many safety assessments already performed worldwide. The 
contaminant is carried by groundwater through two consecutive geosphere layers to the 
biosphere, where it makes its way into a water stream from which exposed population take 
drinking water. This model has 15 inputs, nine of which are affected by uncertainty. These model 
inputs are the initial inventory of 129I (M0), its decay rate (λ), the dose conversion factor (β), and 
all the other inputs that characterize the physical-chemical properties of the near field, both 
geosphere layers and the biosphere. 
 
There are three components in this system model, which will be described in the following 
subsections: the source term model, geosphere models and the biosphere model.  
 

7.1. A.1.- Source term model 
 
The source term model consists of a simple delay in the release, after which a fractional constant 
release begins (the release being proportional to the remaining quantity of contaminant). During 
the whole period, the inventory also decreases due to radioactive decay. Therefore, during the 
containment period, the inventory of 129I decreases according to the following ordinary 
differential equation (ODE): 
 

TttM
dt

tdM
≤−=                     )()( λ ,                                                     (A.1) 

 
while, after the containment period,  the inventory of 129I decreases according to the following 
ODE: 

TttkMtM
dt

tdM
>−−=          )()()( λ .                                                   (A.2) 

 
The initial condition is M(0)=M0. The flow of contaminant escaping from the facility to the first 
geosphere layer is given by 
 

)()( tkMtS = .                                                                        (A.3) 
 
Both containment time (T) and release rate (k) are considered to be uncertain. 
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7.2. A.2.- Geosphere model 
 
The transport of contaminant through both geosphere layers is simulated in one dimension (1-D). 
Each geosphere layer is characterized by its length (L(i), where i stands for the layers; i=1 
corresponds to the first layer and i=2 to the second). The transport equation is 
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where R(i), V(i)and d(i) stand, respectively, for the retardation coefficient, the groundwater velocity 
and the dispersion length in the corresponding geosphere layer, which is indicated by i. C(i) 
stands for the concentration of contaminant in any position x at time t, so that formally it should 
be considered C(i)(x,t). Velocities of groundwater, retardation coefficients and lengths of both 
layers are considered +to be uncertain model inputs, whereas dispersion lengths are known 
inputs. Null concentration of contaminant in both layers is considered for the initial condition. 
For the specification of the boundary conditions, it is assumed that the contaminant flow rate into 
the first layer is the flow coming from the facility. Moreover, the flow rate into the second layer 
is equal to the flow rate from the first layer; similarly, the flow rate into the biosphere is equal to 
the flow rate from the second geosphere layer. 
 

7.3. A.3.- The biosphere model 
 
The biosphere model is very simple. It is assumed that the contaminant coming from the second 
biosphere layer gets into a stream used for drinking water. Therefore, the dose is a function of 
the proportion of water drunk by individuals. Mathematically it can be formulated as 
 

)()( )2( tG
W
wtD β=                                                              (5) 

 
where G(2)(t) is the flow rate coming from the second geosphere layer into the biosphere, β is the 
dose conversion factor, w is the individual’s annual water consumption rate and W is the flow 
rate of the biosphere water stream. 
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Table A.1.- Model inputs in the problem under study (U = uniform distribution, LU = logarithmic-
uniform distribution; in both cases values shown in brackets denote lower and upper bounds). 

PARAMETER TYPE VALUE/DISTRIBUTION UNITS 
M0 Constant 102 Mol 
Λ Constant 4.41·108 y-1 

T Random/uncertain U[102,103] Y 
K Random/uncertain LU[10-3,10-2] y-1 
V(1) Random/uncertain LU[10-3,10-1] m·y-1 

L(1) Random/uncertain U[102,5·102] M 
d(1) Constant 10 M 
R(1) Random/uncertain U[1,5] Dimensionless 
V(2) Random/uncertain LU[10-2,10-1] m·y-1 

L(2) Random/uncertain U[5·101,2·102] m 
d(2) Constant 5 m 
R(2) Random/uncertain U[1,5] Dimensionless 
W constant 0.73 m3·y-1 

W Random/uncertain LU[105,107] m3·y-1 
Β constant 56 Sv·mol-1 

 
 
 
 
 


