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Foreword

The work presented in this report was developed within the Integrated Project PAMINA:
Performance Assessment Methodologies IN Application to Guide the Development of the
Safety Case. This project is part of the Sixth Framework Programme of the European
Commission. It brings together 25 organisations from ten European countries and one EC
Joint Research Centre in order to improve and harmonise methodologies and tools for
demonstrating the safety of deep geological disposal of long-lived radioactive waste for
different waste types, repository designs and geological environments. The results will be of
interest to national waste management organisations, regulators and lay stakeholders.

The work is organised in four Research and Technology Development Components (RTDCS)
and one additional component dealing with knowledge management and dissemination of
knowledge:

- In RTDC 1 the aim is to evaluate the state of the art of methodologies and approaches
needed for assessing the safety of deep geological disposal, on the basis of
comprehensive review of international practice. This work includes the identification of
any deficiencies in methods and tools.

- In RTDC 2 the aim is to establish a framework and methodology for the treatment of
uncertainty during PA and safety case development. Guidance on, and examples of,
good practice will be provided on the communication and treatment of different types of
uncertainty, spatial variability, the development of probabilistic safety assessment tools,
and techniques for sensitivity and uncertainty analysis.

- In RTDC 3 the aim is to develop methodologies and tools for integrated PA for various
geological disposal concepts. This work includes the development of PA scenarios, of
the PA approach to gas migration processes, of the PA approach to radionuclide
source term modelling, and of safety and performance indicators.

- In RTDC 4 the aim is to conduct several benchmark exercises on specific processes, in
which quantitative comparisons are made between approaches that rely on simplifying
assumptions and models, and those that rely on complex models that take into account
a more complete process conceptualization in space and time.

The work presented in this report was performed in the scope of RTDC 2.

All PAMINA reports can be downloaded from http://www.ip-pamina.eu.

PAMINA Sixth Framework programme
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ABSTRACT:

This report consists in deliverable CEA/DEN/DER for the component RTDC 2 of
European project PAMINA (Performance Assessment Methodologies IN Application to
guide the development of the safety case) 6th FP. This task concerns the presentation of
new methods to perform sensitivity analysis for cpu time consuming computer codes. In
this report, one restricts to methodological aspects. We describe a recent technique based
on the use of é metamodel, i.e. a cpu time inexpensive mathematical function fitted and
validated on a few simulations of the computer code. We show how to fit and use one of
the most popular metamodels: the Gaussian process model which extends the kriging
principles of geostatistics to numerical experiments. Its formulation allows to derive
analytical formulas for the sensitivity indices without running other simulations of the
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PERFORMING SENSITIVITY ANALYSIS OF CPU TIME CONSUMING MODELS USING
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Ce rapport constitue le livrable du CEA/DEN/DER pour le composant RTDC 2 du projet
européen PAMINA (Performance Assessment Methodologies IN Application to guide the
development of the safety case) du 6°™ PCRD. Cette tdche concerne la présentation de
nouvelles méthodes pour réaliser des analyses de sensibilité sur des modéles excessivement
colteux en temps de calcul. Dans ce rapport, on se restreint aux aspects méthodologiques.
Nous décrivons une technique récente basée sur [l'utilisation d’'un métamodéle, i.e. une
fonction mathématique, dont I'évaluation se fait avec un temps de calcul négligeable, ajustée
et validée sur quelques simulations du code de calcul. Nous montrons comment ajuster et
utiliser 'un des métamodeéles les plus populaires : le modéle processus gaussien qui étend les
principes du krigeage en géostatistique aux expériences numériques. Sa formulation permet
d’obtenir des formules analytiques pour les indices de sensibilité des variables d’entrée sans
effectuer de nouvelles simulations sur le code de calcul.

This report consists in deliverable CEA/DEN/DER for the component RTDC 2 of European
project PAMINA (Performance Assessment Methodologies IN Application to guide the
development of the safety case) 6th FP. This task concerns the presentation of new methods
to perform sensitivity analysis for cpu time consuming computer codes. In this report, one
restricts to methodological aspects. We describe a recent technique based on the use of a
metamodel, i.e. a cpu time inexpensive mathematical function fitted and validated on a few
simulations of the computer code. We show how to fit and use one of the most popular
metamodels: the Gaussian process model which extends the kriging principles of geostatistics
to numerical experiments. Its formulation allows to derive analytical formulas for the sensitivity
indices without running other simulations of the computer code.

PAMINA, UNCERTAINTY, SENSITIVITY, METAMODEL, RESPONSE SURFACE, KRIGING,
GAUSSIAN PROCESS

PAMINA, INCERTITUDE, SENSIBILITE, METAMODELE, SURFACE DE REPONSE,
KRIGEAGE, PROCESSUS GAUSSIEN

(04/02 - JA-Document1)

Rédacteur Vérificateur Approbateur

Fonction

visa

NOM

Vérificateur Qualité
1Q du SESI Le Chef d}S%SI/LCfR
< - 3

- ~
S _]J

Florence JOYER ‘Frédéric BERTRAND

L

/. m
I= 1 I

Bértrang 100S$ Miche! MARQUES

Date

'),ZZ/Q,%/QX /‘b!}}oz’g 3/041"/08 Li",/'/"“.?" /o

T

Propriété Industrielle

Cadre de réalisation Classification Qualité

En I'absence d'accord ou de contrat, la diffusion
des informations contenues dans ce document
auprés d'un organisme tiers extérieur au CEA

est soumise a l'accord du Chef de Département.

DR|CC|CD|SD| Ss

Document réalisé
sous SMQ certifié

AFAQ — ISO 9001

Projet




NT CEA/DEN/CAD/DER/SESI/LCFR/NT DO 7 21/03/08

0

2/36

NATURE

CHRONO UNITE

INDICE

PAGE

Indice

OBJET DES REVISIONS

DATE

REFERENCE GCAO

0 Emission initiale

28/03/08

CEA/DEN/CAD/DER/SESI/LCFR/NT DO 7 21/03/08




] NT CEA/DEN/CAD/DER/SESI/LCFR/NT DO 7 21/03/08 0 3/36

NATURE CHRONO UNITE INDICE PAGE

1. INTRODUCTION

This report consists in deliverable CEA/DEN/DER for the component RTDC 2 of European project
PAMINA (Performance Assessment Methodologies IN Application to guide the development of the
safety case) 6th FP. This task concerns the presentation of new methods to perform sensitivity
analysis for cpu time consuming computer codes. In this report, one restricts to methodological
aspects. We describe a recent technique based on the use of a metamodel, i.e. a cpu time
inexpensive mathematical function fitted and validated on a few simulations of the computer code.
We show how to fit and use one of the most popular metamodels: the Gaussian process model
which extends the kriging principles of geostatistics to numerical experiments. lts analytical
formulation allows to derive analytical formulas for the sensitivity indices without running other
simulations of the computer code.

The chapter 1 describes an efficient algorithm for modelling complex computer codes with Gaussian
processes. Indeed, when the number or random inputs is large (> 10), non parametric regression
techniques are difficult to apply. The described methodology proposes a new variable selection
technique while fitting the metamodel. This allows to obtain more predictive metamodels.

The chapter 2 shows how to compute variance-based sensitivity indices (that we call Sobol indices)
with the Gaussian process model. Contrary to classical sensitivity indices (derivatives, Pearson and
Spearman correlation coefficients, standardized regression coefficients, etc), the Sobol indices are
valid without any linearity, monotonicity or regularity assumptions of the underlying numerical
model. Computations of Sobol indices via a metamodel are ordinarily done by simple Monte-Carlo
algorithms. We explain two different analytical ways of Sobol indices computations with the
Gaussian process metamodel.
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2 AN EFFICIENT METHODOLOGY FOR MODELING COMPLEX COM-
PUTER CODES WITH GAUSSIAN PROCESSES

2.1 ABSTRACT

Complex computer codes are often too time expensive to be directly used to perform uncertainty
propagation studies, global sensitivity analysis or to solve optimization problems. A well known and
widely used method to circumvent this inconvenience consists in replacing the complex computer
code by a reduced model, called a metamodel, or a response surface that represents the computer
code and requires acceptable calculation time. One particular class of metamodels is studied : the
Gaussian process model that is characterized by its mean and covariance functions. A specific es-
timation procedure is developed to adjust a Gaussian process model in complex cases (non linear
relations, highly dispersed or discontinuous output, high dimensional input, inadequate sampling de-
signs, etc.). The efficiency of this algorithm is compared to the efficiency of other existing algorithms
on an analytical test case. The proposed methodology is also illustrated for the case of a complex
hydrogeological computer code, simulating radionuclide transport in groundwater.

2.2 INTRODUCTION

With the advent of computing technology and numerical methods, investigation of computer code
experiments remains an important challenge. Complex computer models calculate several output
values (scalars or functions) which can depend on a high number of input parameters and physical
variables. These computer models are used to make simulations as well as predictions or sensitivity
studies. Importance measures of each uncertain input variable on the response variability provide
guidance to a better understanding of the modeling in order to reduce the response uncertainties
most effectively (Saltelli et al. [25], Kleijnen [15], Helton et al. [11]).

However, complex computer codes are often too time expensive to be directly used to conduct un-
certainty propagation studies or global sensitivity analysis based on Monte Carlo methods. To avoid
the problem of huge calculation time, it can be useful to replace the complex computer code by a
mathematical approximation, called a response surface or a surrogate model or also a metamodel.
The response surface method (Box & Draper [5]) consists in constructing a function that simulates
the behavior of real phenomena in the variation range of the influential parameters, starting from
a certain number of experiments. Similarly to this theory, some methods have been developed to
build surrogates for long running computer codes (Sacks et al. [24], Osio & Amon [22], Kleijnen &
Sargent[17], Fang et al. [9]). Several metamodels are classically used : polynomials, splines, genera-
lized linear models, or learning statistical models such as neural networks, support vector machines,
... (Hastie et al. [10], Fang et al. [9]).

For sensitivity analysis and uncertainty propagation, it would be useful to obtain an analytic pre-
dictor formula for a metamodel. Indeed, an analytical formula often allows the direct calculation of
sensitivity indices or output uncertainties. Moreover, engineers and physicists prefer interpretable
models that give some understanding of the simulated physical phenomena and parameter inter-
actions. Some metamodels, such as polynomials (Jourdan & Zabalza-Mezghani [14], Kleijnen [16],
looss et al. [13]), are easily interpretable but not always very efficient. Others, for instance neural
networks (Alam et al. [3], Fang et al. [9]), are more efficient but do not provide an analytic predictor
formula.

The kriging method (Matheron [19], Cressie [7]) has been developed for spatial interpolation pro-
blems; it takes into account spatial statistical structure of the estimated variable. Sacks et al. [24]
have extended the kriging principles to computer experiments by considering the correlation between
two responses of a computer code depending on the distance between input variables. The kriging
model (also called Gaussian process model), characterized by its mean and covariance functions,
presents several advantages, especially the interpolation and interpretability properties. Moreover,
numerous authors (for example, Currin et al. [8], Santner et al. [26] and Vazquez et al. [28]) show that
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this model can provide a statistical framework to compute an efficient predictor of code response.

From a practical standpoint, constructing a Gaussian process model implies estimation of several
hyperparameters included in the covariance function. This optimization problem is particularly difficult
for a model with many inputs and inadequate sampling designs (Fang et al. [9], O’'Hagan [21]). In
this paper, a special estimation procedure is developed to fit a Gaussian process model in complex
cases (non linear relations, highly dispersed output, high dimensional input, inadequate sampling
designs). Our purpose includes developing a procedure for parameter estimation via an essential step
of input parameter selection. Note that we do not deal with the design of experiments in computer
code simulations (i.e. choosing values of input parameters). Indeed, we work on data obtained in a
previous study (the hydrogeological model of Volkova et al. [29]) and try to adapt a Gaussian process
model as well as possible to a non-optimal sampling design. In summary, this study presents two
main objectives : developing a methodology to implement and adapt a Gaussian process model to
complex data while studying its prediction capabilities.

The next section briefly explains the Gaussian process modeling from theoretical expression to
predictor formulation and model parameterization. In section 3, a parameter estimation procedure is
introduced from the numerical standpoint and a global methodology of Gaussian process modeling
implementation is presented. Section 4 is devoted to applications. First, the algorithm efficiency is
compared to other algorithms for the example of an analytical test case. Secondly, the algorithm is
applied to the data set (20 inputs and 20 outputs) coming from a hydrogeological transport model
based on waterflow and diffusion dispersion equations. The last section provides some possible
extensions and concluding remarks.

2.3 GAUSSIAN PROCESS MODELING
2.3.1 Theoretical model

Let us consider n realizations of a computer code. Each realization y(x) of the computer code
output corresponds to a d-dimensional input vector z = (z1,...,z4). The n points corresponding
to the code runs are called an experimental design and are denoted as X, = (), .., z(™). The
outputs will be denoted as Y, = (y(), ...,y™) with 4 = y(x®) i = 1, ..., n. Gaussian process (Gp)
modeling treats the deterministic response y(x) as a realization of a random function Y (z), including
a regression part and a centered stochastic process. This model can be written as :

Y(z) = f(z)+ Z(z). (1)

The deterministic function f(x) provides the mean approximation of the computer code. Our study
is limited to the parametric case where the function f is a linear combination of elementary functions.
Under this assumption, f(x) can be written as follows :

.
(@)= Bifix) = F(z)B,
=0

where B8 = [B,..., 5|t is the regression parameter vector and F(x) = [fo(z),..., fr(x)] is the
regression matrix, with each f; (j = 0,...,k) an elementary function. In the case of the one-degree
polynomial regression, (d + 1) elementary functions are used :

fo(z) =1,
filg)=a; for i=1,...,d.

In the following, we use this one-degree polynomial for the regression part, while our methodology
can be extended to other bases of regression functions. The regression part allows the addition of
an external drift. Without prior information on the relation between the model output and the input




| NT CEA/DEN/CAD/DER/SESI/LCFR/NTDO 7 21/03/08 0 6/36

NATURE CHRONO UNITE INDICE PAGE

variables, this quite simple choice appears reasonable. Indeed, adding this simple external drift allows
for a nonstationary global model even if the stochastic part Z is a stationary process. Moreover, on our
tests of section 2.5, this simple model does not affect our prediction performance. This simplification
is also reported by Sacks et al. [24].

The stochastic part Z(x) is a Gaussian centered process fully characterized by its covariance
function : Cov(Z(z), Z(u)) = o?R(z, u), where o2 denotes the variance of Z and R is the correlation
function that provides interpolation and spatial correlation properties. To simplify, a stationary pro-
cess Z(zx) is considered, which means that correlation between Z(x) and Z(u) is a function of the
difference between x and u. Our study is focused on a particular family of correlation functions that
can be written as a product of one-dimensional correlation functions :

d
Cov(Z(z), Z(u)) = o’ R(z — u) = o> [ [ Ri(z — w).
=1

Abrahamsen [2], Sacks et al. [24], Chilés & Delfiner [6] and Rasmussen & Williams [23] give lists
of correlation functions with their advantages and drawbacks. Among all these functions, we choose
to use the generalized exponential correlation function :

d
Rep(zn —u) = Hexp(—@l}ml — Py with 8, > 0and 0 < p; < 2,
=1

where @ = [01,...,04)" and p = [p1,...,pa4)" are the correlation parameters. Our motivations stand
on the derivation and regularity properties of this function. Moreover, different choices of covariance
parameters allow a wide spectrum of possible shapes (Figure 2.1); p = 1 gives the exponential
correlation function and p = 2 the Gaussian correlation function.

Exponential correlation function (1D) Generalized exponential correlation function (1D)
for different correlation parameter (power parameter p=1) for different power parameter (0 = 1)
1 1¢
. — ©0=05 \ ——  power parameter = 0.5
N\ - =1 \ — —  power parameter = 1
0.9\ 0.9\ ter — 2
y . 9=3 \ power parameter =

correlation R(d)
correlation R(d)

d=|x—u| d=|x—uj

Fig. 2.1 — Generalized exponential correlation function for different power and correlation pa-
rameters.

Even for deterministic computational codes (i.e. outputs corresponding to the same inputs are
identical), the outputs may be subject to noise (e.g. numerical noise). In this case, an independent
white noise U(z) is added in the stochastic part of the model :

Y(z) = f(x)+ Z(z) + U(z), (2)
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where U(x) is a centered Gaussian variable with variance £2 = o7. In terms of covariance function,
this white noise introduces a discontinuity at the origin called the nugget effect (Matheron [19]) :

Cov(Y (), Y (u)) = o> <R9,p(az —u)+ 7z — u)> :

lifv=0,
where §(v) =
0 otherwise.

2.3.2 Joint and conditional distributions

Under the hypothesis of a Gp model, the learning sample Y follows the multivariate normal dis-
tribution

p(}/t?|X81/670—795p,7—) :N(Fsﬁy Es)a

where F, = [F(zMW)t ... F(z(™)!] is the regression matrix and

- 2 (@) _ L)
ES a <R01p <£l) r )i,j—l.,.11+TIn>

is the covariance matrix with I,, the n-dimensional identity matrix.
If a new point «* = (z7, ..., z3}) is considered, the joint probability distribution of (Y5, Y (z*)) is :

F s k(z*)
p(YS>Y(m*)|stm*aﬁao—u97p7T):N({ :i ﬁ’ l: }) 3 (3)
F(x*) k(z*)t o?(1+7)

with
k(z*) = (Cov(y™, Y (z*)),...,Cov(y™, Y (x*)) )" @
— 02( Rg!p(m(l)’m*) + ’ré(m(l),x*), o ,Ro,p(f”(”)afﬁ*) + 'ré(a:(”),:n*) )t.

By conditioning this joint distribution on the learning sample, we can readily obtain the conditional
distribution of Y (*) which is Gaussian (von Mises [30]) :

p(Y(w*)IYS7 X, z%, 8,0, 9,p,7’)
= N(E[Y(w*)nfs> XS) :c*,ﬁ,a, eap)TL Var[y('ll’.*)l}/:?, X87m*)ﬁa g, 97pa TD )

()

with

{ E[Y (2*)|Ys, Xs, 2, 8,0,0,p,7] = F(z*)B + k(z*) ! S7L(Y, — F,8), o

Var{Y(:c*)|Ys, stm*nB’UveapaT] - 02(1 + T) - k(w*)tzglk(m*)

The conditional mean (equation (6)) is used as a predictor. The variance formula corresponds
to the mean squared error (MSE) of this predictor and is also known as the kriging variance. This
analytical formula for MSE gives a local indicator of the prediction accuracy. More generally, Gp model
provides an analytical formula for the distribution of the output variable at an arbitrary new point.
This distribution formula can be used for sensitivity and uncertainty analysis, as well as for quantile
evaluation (O’Hagan [21]). Its use can be completely or partly analytical and avoids costly methods
based for example on a Monte Carlo algorithm. The variance expression can also be used in sampling
strategies (Scheidt & Zabalza-Mezghani [27]). All these considerations and possible extensions of Gp
modeling represent significant advantages (Currin et al. [8], Rasmussen & Williams [23]).
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2.3.3 Parameter estimation

To compute the mean and variance of a Gp model, estimation of several parameters is needed.
Indeed, the Gp model (2) is characterized by the regression parameter vector 3, the correlation
parameters (8, p) and the variance parameters (c2, 7). The maximum likelihood method is commonly
used to estimate these parameters. Given a Gp model, the log-likelihood of Y can be written as :

1
Iy, (3,0,p,0,7) = 4% In(27) — gln(ch) ~3 ln(det(Rep +71,))

1 _
~g (Vs = BB) (Rg pp + 1) 71 (Vs = Fif3).
Given the correlation parameters (8, p) and the variance parameter 7, the maximum likelihood esti-
mator of 3 is the generalized least squares estimator :

B=(FHRgy+71) "F) ™ B Ry, +71) 'Y, (7)

and the maximum likelihood estimator of o2 is :

—_ 1 . .
o2 = —(Ys = FB) (R + 71,) " (Vs = Fsf3). (8)
Remark 2.1 If we consider the predictor built on the conditional mean (equation (6)), we replace 8
by its estimator 3. The predictor writes now

—

Y(m*)IYS,XS)IB*,a',B,p,T = F(.’Z}*)/@ + k(m*)tzgl()/s - FSIB)

and its MSE has consequently an additional component (Santner et al. [26]) :
Var[@ﬁ@, Xy, 2*,0,0,p,7] = 0?(1+7) — k(z")! 27 e(x") + u(x*) (F' =, ) Tu(z)!
with u(x*) = F(x*) — k(z*)'S; 1 Fy.

Matrix Rgp depends on 8 and p. Consequently, 3 and o2 depend on @, p and 7. Substituting J¢;

and o2 into the log-likelihood, we obtain the optimal choice (5, p,7T) which maximizes :
1 —
d(0,p,7) = -3 [n In(c?) + ln(fRH,p + ’/"I,nl)} where |R9)p +7I,|= det(Rg)p +71,).

Thus, estimation of (8, p) and 7 consists in numerical optimization of the function ) defined as fol-
lows : R 4 .
0,p,7) = areg min (6, p, 7) With (0, p,7) = |Rg ,, + 71,n o2

D7

Our study is focused on complex cases with large dimensions d for the input vector x (d = 20 in our
second example in section 2.5), where the sampling design has not been chosen as a uniform grid.
In this setting, minimizing function (8, p, 7) is an optimization problem that is numerically costly and
hard to solve. Several difficulties guide the choice of the algorithm. First, a large number of parameters
imposes the use of a sequential algorithm, where different parameters are introduced step by step.
Second, a large parameter domain due to the number of parameters and the lack of prior bounds
requires an exploratory algorithm able to explore the domain in an optimal way. Finally, the observed
irregularities of (8, p,r) due, for instance, to a conditioning problem induce local minima, which
recommend the use of a stochastic algorithm rather than a descent algorithm.

Several algorithms have been proposed in previous papers. Welch et al. [31] use the simplex
search method and introduce a kind of forward selection algorithm in which correlation parameters
are added step by step to reduce function (6, p, 7). In Kennedy and O’'Hagan’s GEM-SA software
(O’Hagan [21]), which uses the Bayesian formalism, the posterior distribution of hyperparameters is
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maximized via a conjugate gradient method (the Powel method is used as the numerical recipe). The
DACE Matlab free toolbox (Lophaven et al. [18]) introduces a powerful stochastic algorithm based on
the Hooke & Jeeves method (Bazaraa et al. [4]), which unfortunately requires a starting point and
some bounds to constrain the optimization. In complex applications, Welch’s algorithm reveals some
limitations and for high dimensional input, GEM-SA and DACE software cannot be applied directly
on data including all the input variables. To solve this problem, we propose a sequential version
(inspired by Welch’s algorithm) of the DACE algorithm. It is based on the step by step inclusion
of input variables (previously sorted). Our methodology allows progressive parameter estimation by
input variables selection both in the regression part and in the covariance function. The complete
description of this methodology is the subject of the next section.

Remark 2.2 One of the problems we have to acknowledge in the evaluation of ¥(0,p, ) is the condition
number of the prior covariance matriz. This condition number affects the numerical stability of the
linear system for the B determination and for the evaluation of the determinant. The degree of ill-
conditioning not only depends on sampling design but is also sensitive to the underlying covariance
model. Ababou et al. [1] showed, for example, that a Gaussian covariance (p = 2) implies an ill-
conditioned covariance matriz (which leads to a numerically unstable system), while an exponential
covariance (p = 1) gives more stability. Moreover, in our case, the experimental design cannot be
chosen and numerical parameter estimation is often damaged by the ill-conditioning problem. The
nugget effect represented by T solves this problem. Although the outputs of the learning sample are no
longer interpolated, this nugget effect improves the correlation matriz condition number and increases
robustness of our estimation algorithm.

2.4 MODELING METHODOLOGY

Let us first detail the procedure used to validate our model. Since the Gp predictor is an exact
interpolator (except when a nugget effect is included), residuals of the learning data cannot be used
directly. So, to estimate the mean squared error in a non-optimistic way, we use either a K-fold cross
validation procedure (Hastie et al. [10]) or a test sample (consisting of new data, unused in the building
process of the Gp model). In both cases, the predictivity coefficient @ is computed. Q- corresponds
to the classical coefficient of determination R? for a test sample, i.e. for prediction residuals :

iy ¥) —1- = (v-7)
254 Stest (Y y)

where Y denotes the n,.,; Observations of the test set and Y is their empirical mean. Y represents the
Gp model predicted values, i.e. the conditional mean (equation (6)) computed which the estimated
values of parameters (ﬁ g, ] .p, 7). Other simple validation criteria can be used : the absolute error,
the mean and standard deviation of the relative residuals, ... (see, for example, Kleijnen & Sargent
[17]), which are all global measures. Some statistical and graphical analyses of residuals can provide
more detailed diagnostics.

Our methodology consists in seven successive steps. A formal algorithmic definition is speci-

fied for each step. For i = 1,....d, let e; denote the *" input variable. M, = {6(10 . S{O)} de-
notes the complete initial model (i.e. all the inputs in their initial ranking). M = {egl), e f, )} and
My = {652), . (2)} refer to the inputs in new rankings after sorting by different criteria (correlation

coefficient or vanatlon of Q2). Finally, M., and M,., denote the current covariance model and the
current regression model; i.e. the list of selected inputs appearing in the covariance and regression
functions.

Step 0 - Standardization of input variables
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The appropriate procedure to construct a metamodel requires space filling designs with good op-
timality and orthogonality properties (Fang et al. [9]). However, we are not always able to choose
the experimental design, especially in industrial studies when the data have been generated a long
time ago. Furthermore, other restrictions can be imposed; for example, a sampling design taking into
account the prior distribution of input variables. This can have prejudicial consequences for hyperpa-
rameter estimation and metamodel quality.

So, to increase the robustness of our parameter estimation algorithm and to optimize the me-
tamodel quality, we recommend to transform all the inputs into uniform variables. In order to get
each transformed input variable following an uniform distribution 2£[0, 1], the theoretical distribution (if
known) or the empirical ones after a piecewise linear approximation is applied to the original inputs.
This approximation is required to avoid transforming a future unsampled x* to one of the transformed
training sites, even if no element of z* is equal to the corresponding element of any of the untransfor-
med training sites. We empirically observed that this uniform transformation of the inputs seems well
adapted to correctly estimate correlation parameters. Choices of bounds and starting points are also
simplified by this standardization.

Step 1 - Initial input variables ranking by decreasing coefficient of correlation between
e; and Y

Sorting input variables is necessary to reduce the number of possible models, especially to dissociate
regression and covariance models. Furthermore, direct estimation of all parameters without an effi-
cient starting point gives bad results. So, as a sort criterion, we choose the coefficient of correlation
between the input variable and the output variable under consideration. The correlation coefficients
between the input parameters and the output variable are the simplest measures of the influence of
inputs on the output (Saltelli et al. [25]). They are valid in the linear relation context, while in the non-
linear context, they give a first idea of the hierarchy among input variables, in terms of their influence
on the output. Finally, this simple and intuitive choice does not require any modeling and appears a
good initial method to sort the inputs when no other information is available.

For a strongly nonlinear computer code, it could be interesting to use a qualitative method, inde-
pendent of the model complexity, in order to sort the inputs by influence order (Helton et al. [11]).
Another possibility would be to fit an initial Gp model with a regression part limited to an intercept
and all components of p equal to 1 or 2. Only the correlation coefficients vector 6 has to be estima-
ted. Then, sensitivity measures such as the Sobol indices (Saltelli et al. [25], Volkova et al. [29)) are
computed and used to sort the inputs by influence order.

Algorithm

Mo {0, e = My = {0, )
Mieg = M
Mooy = My

Step 2 - Initialization of the correlation parameter bounds and starting points for the
estimation procedure

To constrain the ¥ optimization, the DACE estimation procedure requires three following values
for each correlation parameter : a lower bound, an upper bound and a starting point. These values are
crucial for the success of the estimation algorithm, when it is used directly for all the input variables.
However, using sequential estimation based on progressive introduction of input variables, we limit
the problems associated with these three values, especially with the starting point value. Another
way to reduce the importance of starting point and bounds is to increase the number of iterations in
DACE estimation algorithm. However, in the case of a high number of inputs, increasing the number
of iterations in DACE can become extremely time expensive ; a compromise has to be found. As the
input variables have been previously transformed into standardized uniform variables, the initialization
and the bounds of the correlation parameters can be the same for all the inputs :




NT CEA/DEN/CAD/DER/SESI/LCFR/NT DO 7  21/03/08 0 11/36

NATURE CHRONO UNITE INDICE PAGE

< lower bounds for each component of 6 and p : lobg = 1078, lobp =0,
< upper bounds for each component of 8 and p : upbg = 100, upbp = 2,
¢ starting points for estimation of each componentof @ andp : 09 = 0.5, p® = 1.

Step 3 - Successive inclusion of input variables in the covariance function

For each set of inputs included in the covariance function, all the inputs from the ordered set in
the regression function are evaluated. Correlation and regression parameters are estimated by the
DACE modified algorithm, with the values, estimated at the (i — 1)“‘ step for the same regression
model, used as a starting point. More precisely, at step i, input variables numbered from 1 to 7 are
included in the covariance function and the algorithm estimates pairs of the correlation parameters
(6;,p) for i = 1,...,1. As the starting point, the algorithm uses correlation parameters obtained at
the (i — 1)"" step for the starting values of ((61,p1), ..., (fi-1,pi-1)). First starting value of (6;,p;) is
fixed to an arbitrary reference value. Then, at each step, selection of variables in the regression part
is also made.

Hoeting et al. [12] recommends the corrected Akaike information criterion (AICC) for input se-
lection in the regression model in order to take spatial correlations into account. Therefore, after the
estimation of correlation and regression parameters, the AICC is computed :

m1+meo+ 1
71-777,1“???,2—2’

AICC = 21y, (B, 0, &) +on

where m; denotes the number of input variables in the regression function, m, those in the covariance
function and [y the log-likelihood of the sample Y. The required model is the one minimizing this
criterion.

Algorithm

Fori=1...d

<& Step 3.1 : Variables in covariance function
Mi,cov = Mcov(l» coe si)
<& Step 3.2 : Successive inclusion of input variables in regression function
Forj=1...d
— Regression Model :
Mj,reg - Mreg(lv s aj)
— Parameter estimation :
ginit — (91(17—1),3" o 79171(1'—1),3" go)t
pit = (p O py D p0y
(09, p"7] = DACE estimation(M; coy, M, reg, [0, p™], [lobg, lobp], [upbg, upbp])
— AICC Criterion computation
AICC(4, j) = AICC(M; covs M reg)
End
& Step 3.3 : Optimal regression model selection :
FOP™ (§) = arg min (AICC(i, j))

J
& Step 3.4 1 Q4 evaluation by K-fold cross validation or on test data (with current correlation
model and optimal regression model)

Q2(1) = Q2(M covs Mjortim (i) reg)
End

This order (correlation outer, regression inner) can be justified by minimizing the computer time
required for optimization. The selection procedure for the regression part is made by the minimization
of AICC criterion which requires, at each step, only one parameter estimation. On the other hand,
the covariance selection is made by the maximization of @, which is often computed by a K-fold
cross validation. This procedure requires, at each step, K estimation procedures. So, the loop on
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covariance selection is the more expensive, and consequently has to be outer. The choice of K
depends on the number of observations of the data set, on the constraints in term of computer
time and on the influence of the learning sample size on prediction quality. If few data are available,
a leave-one-out cross-validation could be preferred to a K-fold procedure to avoid an undesirably
negative effect of small learning sets on prediction quality.

Remark 2.3 To avoid some biases on the choice of the optimal covariance model in the next two steps,
the coefficient Qo has to be computed on a test sample (or by a cross validation procedure), different
from the one used for the final validation of the Gp model at step 7.

Other criteria often used in the optimization of the computer experiment designs (Sacks et al. [24],
Santner et al. [26]) could be considered to select the optimal regression and covariance model. These
criteria are based on the variance of Gp model : they produce a model that minimizes the maximum
or the integral of predictive variance over input space. However, in the case of a high number of
inputs, the optimization of these criteria can be very computer time expensive. The advantage of the
Q- statistic is its relatively fast evaluation, while producing a final model that optimizes the predictive
performance.

Step 4 (optional) - New input variables ranking in the covariance function based on the
evolution of Q, (inputs sorted by decreasing “jumps” of Q)5)

This optional step improves the selection of inputs, particularly in the covariance function. For
each input X;, the increase of the Q, coefficient (denoted AQ, (7)) is computed when this i** variable
is added to the covariance function. This value is an indicator of the contribution of the it input to
the accuracy of the Gp model. For this reason, it can be judicious to use values AQ4(1), ..., AQ2(d)
to sort the inputs included in the correlation function. The inputs are sorted by decreasing of values
AQ5(i) and the procedure of parameter estimation is repeated with this new ranking of inputs for the
covariance function (step 3 is rerun).

Algorithm
— Evaluation of @, increase for each input variable included in the covariance function :

AQa(k) = Q2(1)

Fork=2...d
AQa(k) = Qa(k) — Q2(k — 1)
end
— Sorting input variables by decreasing of AQ9
M| = Mo

Step 5 (optional) - Algorithm for parameter estimation with new ranking of input va-
riables in the covariance function

This optional step improves the selection of inputs, particularly in the covariance function. The
procedure of parameter estimation (step 3) is repeated with the inputs sorted by decreasing values
of AQ4(4) in the covariance function. Consequently, correlation parameters related to the inputs that
are the most influential for the increase of the Gp model accuracy are estimated in the first place.
Furthermore, we can also hope that the use of this new ranking allows a decrease in the number
of inputs included in the covariance function and an optimal input selection. The use of this new
ranking appears more judicious and justifiable for the covariance function than sorting by decreasing
correlation coefficient (cf. step 1). However, the ranking of step 1 is kept for the regression function.

Algorithm
Mreg = M
Moy = Mo

Step 6 - Optimal covariance model selection
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For each set of inputs in the covariance function, the optimal regression model is selected based
on minimization of the AICC criterion (cf. step 3.3). Then, the predictivity coefficient @ is computed
either by cross validation or on a test sample (cf. step 3.4). Finally, the selected covariance model is
the one corresponding to the highest @, value.

Algorithm

W;_arg max (Q2(1))
g

M = Mgy (1., iPHm)

Moptim — Mreg(l) o ,joptim(ioptim))

reg
Step 7 - Final validation of the optimal Gp model

After building and selecting the optimal Gp model, a final validation is necessary to evaluate the
predictive performance and to eventually compare it to other metamodels. To do this, coefficient Q-
is evaluated on a new test sample (i.e. data not used in the building procedure). If only few data are
available, a cross validation procedure can be considered. So, two cross validation procedures are
overlapped ; one for building the model and one for its validation.

Algorithm

ginal _ QQ(MZ%%m’Moptim)

reg

After all the steps of our algorithm (including the step 5), we can often link the inputs appearing
in the covariance and regression functions with the nature of their effects on the output. Indeed, we
can generally observed 4 cases : the inputs with only a linear effect which are supposed to appear
only in the regression and excluded from the covariance with the step 5, the inputs with only a non-
linear effect which are excluded from the regression and can then appear in the covariance with the
re-ordering of M., at step 5, the inputs with both effects appearing in the regression and covariance
functions and, finally, the inactive input variables excluded from both.

2.5 APPLICATIONS
2.5.1 Analytical test case

First, an analytical function called the g-function of Sobol is used to illustrate and justify our me-
thodology. The g-function of Sobol is defined for d inputs uniformly distributed on |0, 1]d :

d
AX) — 2|+ ap
gSob0|(X1, . ,Xd_) _ H gk(ch> where gk.(Xk) = I——kl—iw—}‘— and ap > 0.
k=1 + a

Because of its complexity (strongly nonlinear and non-monotonic relationship) and the availability
of analytical sensitivity indices, the g-function of Sobol is a well known test example in the studies
of global sensitivity analysis algorithms (Saltelli et al. [25]). The contribution of each input X to the
variability of the model output is represented by the weighting coefficient . The lower this coefficient
a, the more significant the variable X . For example :

ar = 0 — X}, is very important,
ar = 1 — Xy is relatively important,

ap = 9 — X}, is non important,

ar = 99 — X} is non significant.

For our analytical test, we choose a; = k.
Applying our methodology to the g-function of Sobol, we illustrate its different steps, especially
the importance of rerunning the estimation procedure after sorting the inputs by decreasing AQ»
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(cf. steps 4 and 5). At the same time, comparisons are made with other reference software like, for
example, the GEM-SA software (O’Hagan [21], freely available at http ://www.ctcd. group. shef. ac.uk/gem. html)

To do this, different dimensions of inputs are considered, from 4 t0 20 : d = 4,6,...,20. For each
dimension d, we generate a learning sample formed by N,s = d x 10 simulations of the g-function of
Sobol following the Latin Hypercube Sampling (LHS) method (McKay et al. [20]). Using these learning
data, two Gp models are built : one following our methodology and one using the GEM-SA software.
For each method, the . coefficient is computed on a test sample of Nps = 1000 points. For each
dimension d, this procedure is repeated 50 times to obtain an average performance in terms of the
prediction capabilities of each method (mean of Q). The standard deviation of @, is also a good
indicator of the robustness of each method.

For each dimension d, the mean and standard deviation of 2, computed on the test sample using
different methods are presented in Table 2.1. Three methods are compared : the GEM-SA software,
our methodology without steps 4 and 5, and our methodology with steps 4 and 5.

g-Sabol GEM-SA software Gp methodology Gp methodology
simulations without steps 4 and 5 with steps 4 and 5
d Nrs Q2 sd Qs sd Q2 sd
4 40 0.82 0.08 0.60 0.21 0.86 0.07
6 60 0.67 0.24 0.59 0.16 0.85 0.05
8 80 0.66 0.13 0.61 0.10 0.85 0.04
10 100 0.59 0.25 0.63 0.13 0.83 0.05
12 120 0.57 0.16 0.61 0.15 0.84 0.05
14 140 0.60 0.17 0.61 0.14 0.83 0.03
16 160 0.62 0.11 0.67 0.06 0.86 0.04
18 180 0.66 0.09 0.67 0.05 0.84 0.03
20 200 0.64 0.09 0.72 0.07 0.86 0.02

TAB. 2.1 — Mean (), and standard deviation sd of the predictivity coefficient (), for several
implementations of the g-function of Sobol.

For the values of d higher than 6, our methodology including double selection of inputs (with steps
4 and 5) clearly outperforms the others. More precisely, the pertinence of rerunning the estimation
procedure after sorting the inputs by decreasing AQ, is obvious. The prediction accuracy is much
more robust (lower standard deviation of QJ2).

The drawback of our methodology lies in the somewhat costly steps 4 and 5. Indeed, sequential
estimation and rerunning of the procedure require many executions of the Hooke & Jeeves algo-
rithm, particularly in the case of a double cross validation (cf. steps 3.4 and 7 of the algorithm).
Consequently, this approach is much more computer time expensive than the GEM-SA software. For
example, for a simulation with d = 10 and N5 = 100, the computing time of our approach is on
average ten times larger than that of the GEM-SA software.

For a practitioner, a compromise is usually made between the time to obtain the sampling design
points and the time to build a metamodel. As a conclusion of this section, our methodology is interes-
ting for high dimensional input models (more than ten), for inadequate or small sampling designs (a
few hundreds) and when simpler methodologies have failed. The data presented in the next section
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fall into this scope.

Remark 2.4 The Gp model used in the GEM-SA software has a gaussian covariance function. Qur
model uses a generalized exponential correlation function even if it requires the estimation of twice as
many hyperparameters. Indeed, the sequential approach allows to estimate a large number of hyperpa-
rameters.

2.5.2 Application on an hydrogeologic transport code

Our methodology is now applied to the data obtained from the modeling of strontium 90 (noted
9Sr) transport in saturated porous media using the MARTHE software (developed by BRGM, the
French Geological Survey). The MARTHE computer code models flow and transport equations in
three-dimensional porous formations. In the context of an environmental impact study, this code is
used to model °Sr transport in saturated media for a radwaste temporary storage site in Russia (Vol-
kova et al. [29]). One of the final purposes is to determine the short-term evolution of *°Sr transport
in soils in order to help rehabilitation decision making. Only a partial characterization of the site has
been made and, consequently, values of the model input parameters are not known precisely. One of
the first goals is to identify the most influential parameters of the computer code in order to improve
the characterization of the site in an optimal way. Because of large computing time of the MARTHE
code, Volkova et al. [29] propose to construct a metamodel on the basis of the first learning sample.
In the following, our Gp methodology is applied and its results are compared to the previous ones
obtained with boosting regression trees and linear regression.

Data presentation
Data simulated in this study are composed of 300 observations. Each simulation consists of 20 inputs
and 20 outputs. The 20 uncertain model parameters are permeability of different geological layers
composing the simulated field (parameters 1 to 7), longitudinal dispersivity coefficients (parameters
8 to 10), transverse dispersivity coefficients (parameters 11 to 13), sorption coefficients (parameters
14 to 16), porosity (parameter 17) and meteoric water infiltration intensities (parameters 18 to 20). To
study sensitivity of the MARTHE code to these parameters, simulations of these 20 parameters have
been made by the LHS method.

For each simulated set of parameters, MARTHE code computes transport equations of 9°Sr and
predicts the evolution of 9°Sr concentration. Initial and boundary conditions for the flow and transport
models are fixed at the same values for all simulations. So, for an initial map of “°Sr concentration in
2002 and a set of 20 input parameter values, MARTHE code computes a map of predicted concen-
trations in 2010. For each simulation, the 20 outputs considered are values of “°Sr concentration,
predicted for year 2010, in 20 piezometers located on the waste repository site.

Comparison of three different models
For each output, we choose to compare and analyze the results of three models :

> Linear regression : it represents a model that provides a reference for the contribution
of the Gp model stochastic component to modeling quality. Indeed, comparison between
simple linear regression and Gp model will show if considering spatial correlations has
significant impact on the modeling results. Moreover, a selection based on the AICC cri-
terion is implemented to optimize the results of the linear regression.

> Boosting of regression trees : this model was used in the previous study of the data (Vol-
kova et al. [29]). The boosting trees method is based on sequential construction of weak
models (here regression trees with low interaction depth), that are then aggregated. The
MART algorithm (Multiple Additive Regression Trees), described in Hastie et al. [10], is
used here. The boosting trees method is relatively complex, in the sense that, as with
neural networks, it is a black box model, efficient but quite difficult to interpret. It is inter-
esting to see if a Gp model, that is easier to interpret and offers a quickly computable
predictor, can compete with a more complex method in terms of modeling and prediction
quality. Note that the boosting trees algorithm also makes its proper input selection.
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> Gaussian process : to implement this model, the methodology previously described in this
paper is applied, with the input selection procedure.

Results
To compare prediction quality of the three different models presented above, the coefficient of predic-
tivity Q2 is estimated by a 6-fold cross validation. Note that for each model the results correspond to
the optimal set of inputs included in the model. To avoid some bias in the results, the cross validation
used to select variables in the Gp model (see step 6) differs from the cross validation used to validate
and compare prediction capabilities of the three models. Indeed, at each cross validation step (used
to validate), data are divided into a learning sample (denoted LS1) of 250 observations and a test
sample (7'S1) of the 50 remaining observations. For the Gp model, the procedure of variable selec-
tion is then performed by a second cross validation on LS1 (for example : a 4-fold cross validation,
dividing LS1 into a learning set LS2 of 210 data and a test set 7'S2 of the 40 others). Then, an optimal
set of variables is determined and a Gp model is built based on the 250 data of L.S1 (with this optimal
set of inputs previously selected). Finally, the model is validated on the test set 7°'S1 that has never
been used for the Gp model construction.

The results are presented in Table 2.2 and are taken up in a barplot (see Figure 2.2). Results
obtained for the output 8 (piezometer p110) are not considered because of physically insignificant
concentration values. For most outputs, the Gp performance is superior to linear regression and
boosting, in many cases substantially so. Concerning the outputs 11 (p27k) and 19 (p4a), the perfor-
mances of the Gp model are worse than the linear regression ones. However, for these two outputs,
the prediction errors are very high and consequently the difference of performance between the two
models can be considered as non-significant.

As expected, for most of the outputs, the linear regression presents the worst resuits. When this
model is successfully adapted, the two others are also efficient. When linear regression fails (for
example, for output number 12), Gp model presents a real interest, since it gives results as good as
those of the boosting trees method. In fact, this is verified for all the ouputs and results are significantly
better for several outputs (outputs 1, 2, 4, 9, 12, 13 and 16). To illustrate this, the Figure 2.3 shows
the predicted values vs real values for the output 16, for the Gaussian process and boosting trees
models. It clearly shows a better repartition of the Gp model residuals than the boosting trees model
ones.

O Linear regression [ Boosting B Gaussian process

0,8 -

0,6 -

Q2

0,2 -

p1-76p102K p103

Piezometers

Fig. 2.2 — Barplot of the predictivity coefficient (), for the three different models.

Furthermore, the estimator of MSE, that is expressed analytically (see Equation (6)), can be used
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Output Linear regression boosting trees Gaussian process
Denomination Number Qo Q2 @2
pl-76 1 0.31 0.59 0.84
pl02K 2 0.48 0.64 0.78
p103 3 0.10 0.43 0.5
pl04 4 0.69 0.83 0.96
pl06 5 0.17 0.29 0.45
p107 6 0.40 0.78 0.86
pl109 7 0.40 0.45 0.5
p2-76 9 0.19 0.58 0.86
p23 10 0.74 0.94 0.935
p27K 11 0.52 0.60 0.43
p29K 12 0.55 0.80 0.93
p31K 13 0.27 0.51 0.69
p35K 14 0.26 0.55 0.56
p36K 15 0.54 0.60 0.60
p37K 16 0.59 0.62 0.90
p38 17 0.25 0.43 0.52
p4-76 18 0.67 0.95 0.96
pda 19 0.16 0.17 0.09
p4db 20 0.39 0.27 0.37

TAB. 2.2 — Predictivity coefficients (), for the three different models of the MARTHE data.

as a local prediction interval. To illustrate this, we consider 50 observations of the output 16. Figure
2.4 shows the observed values, the predicted values and the upper and lower bounds of the 95%
prediction interval based on the MSE local estimator. It confirms the good adequacy of the Gp model
for this output because all the observed values (except one point) are inside the prediction interval
curves.
Analysis

These results confirm the potential of the Gp model and justify its application for computer codes.
Application of our methodology to complex data also confirms the efficiency of our input selection
procedure. For a fixed set of inputs in the covariance function, we can verify that this procedure
selects the best set of inputs in regression part. Furthermore, the necessity of conducting sequen-
tial and ordered procedure estimation has been demonstrated. Indeed, if all the Gp parameters (i.e.
considering the 20 inputs) are directly and simultaneously estimated with the DACE algorithm, they
are not correctly determined and poor results in terms of Q4 are obtained. So, in case of a com-
plex model with a large number of inputs, we recommend using a selection procedure such as the
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Fig. 2.3 — Plot of predicted values vs real values for boosting trees (left) and Gaussian process
(right).
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Fig. 2.4 — Plot of observed and Gaussian process predicted values for the output 16 with the
95% prediction interval based on M SFE formula.

algorithm of section 2.4.
The study of these data have motivated the choice of this methodology. At first, Welch’s algorithm

(see section 2.3.3) has been tried. Considering the poor results obtained, our methodology based
on the DACE estimation algorithm has been developed. To illustrate this, let us detail the different
results obtained on the output number 9. With our methodology based on the DACE estimation, the
Q) coefficient (always computed by a 6-fold cross validation) is 0.86, while with Welch’s algorithm
(used in its basic version), Q- is close to zero. The difference in the results between the two methods
can be explained by the value of estimated correlation parameters which are significantly different.
To minimize the number of correlation parameters and consequently reduce computer time re-
quired for estimation, the possible values of power parameters p; (i = 1,...,d) can be limited to
0.5, 1 and 2. It can be a solution to optimize computer time. It allows an exhaustive, quick and opti-
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mal representation of different kinds of correlation functions (two kinds of inflexion are represented).
Furthermore, in many cases, estimation of power parameter with generalized exponential correlation
converges to exponential (p; = 1) or Gaussian (p; = 2) correlation.

2.6 CONCLUSION

The Gaussian process model presents some real advantages compared to other metamodels :
exact interpolation property, simple analytical formulations of the predictor, availability of the mean
squared error of the predictions and the proved efficiency of the model. The keen interest in this
method is testified by the publication of the recent monographs of Santner et al. [26], Fang et al. [9]
and Rasmussen & Williams [23].

However, for its application to complex industrial problems, developing a robust implementation
methodology is required. In this paper, we have outlined some difficulties arising from the parame-
ter estimation procedure (instability, high number of parameters) and the necessity of a progres-
sive model construction. Moreover, an a priori choice of regression function and, more important, of
covariance function is essential to parameterize the Gaussian process model. The generalized ex-
ponential covariance function appears in our experience as a judicious and recommended choice.
However, this covariance function requires the estimation of 2d correlation parameters, where d is the
input space dimension. In this case, the sequential estimation and selection procedures of our me-
thodology are more appropriate. This methodology is interesting when the computer model is rather
complex (non linearities, threshold effects, etc.), with high dimensional inputs (d > 10) and for small
size samples (a few hundreds).

Results obtained on the MARTHE computer code are very encouraging and place the Gaussian
process as a good and judicious alternative to efficient but non-explicit and complex methods such as
boosting trees or neural networks. It has the advantage of being easily evaluated on a new parame-
ter set, independently of the metamodel complexity. Moreover, several statistical tools are available
because of the analytical formulation of the Gaussian model. For example, the MSE estimator offers
a good indicator of the model’s local accuracy. In the same way, inference studies can be developed
on parameter estimators and on the choice of the experimental input design. Finally, one possible
improvement in our construction algorithm is based on the sequential approach of the choice of input
design, which remains an active research domain (Sceidt & Zabalza-Mezghani [27] for example).
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3 CALCULATIONS OF SOBOL INDICES FOR THE GAUSSIAN PRO-
CESS METAMODEL

3.1 ABSTRACT

Global sensitivity analysis of complex numerical models can be performed by calculating variance-
based importance measures of the input variables, such as the Sobol indices. However, these tech-
niques, requiring a large number of model evaluations, are often unacceptable for time expensive
computer codes. A well known and widely used decision consists in replacing the computer code by
a metamodel, predicting the model responses with a negligible computation time and making straight-
forward the estimation of Sobol indices. In this paper, we discuss about the Gaussian process model
which gives analytical expressions of Sobol indices. Two approaches are studied to compute the So-
bol indices : the first based on the predictor of the Gaussian process model and the second based on
the global stochastic process model. Comparisons between the two estimates, made on analytical
examples, show the superiority of the second approach in terms of convergence and robustness. Mo-
reover, the second approach allows to integrate the modeling error of the Gaussian process model by
directly giving some confidence intervals on the Sobol indices. These techniques are finally applied
to a real case of hydrogeological modeling.

3.2 INTRODUCTION

Environmental risk assessment is often based on complex computer codes, simulating for ins-
tance an atmospheric or hydrogeological pollution transport. These computer models calculate seve-
ral output values (scalars or functions) which can depend on a high number of input parameters and
physical variables. To provide guidance to a better understanding of this kind of modeling and in order
to reduce the response uncertainties most effectively, sensitivity measures of the input importance on
the response variability can be useful (Saltelli et al. [24], Kleijnen [12], Helton et al. [9]). However, the
estimation of these measures (based on Monte-Carlo methods for example) requires a large number
of model evaluations, which is unacceptable for time expensive computer codes. This kind of problem
is of course not limited to environmental modeling and can be applied to any simulation system.

To avoid the problem of huge calculation time in sensitivity analysis, it can be useful to replace the
complex computer code by a mathematical approximation, called a response surface or a surrogate
model or also a metamodel. The response surface method (Box & Draper [2]) consists in constructing
a function from few experiments, that simulates the behavior of the real phenomenon in the domain
of influential parameters. These methods have been generalized to develop surrogates for costly
computer codes (Sacks et al. [23], Kleijnen & Sargent[13]). Several metamodels are classically used :
polynomials, splines, generalized linear models, or learning statistical models like neural networks,
regression trees, support vector machines (Chen et al. [3], Fang et al. [8]).

Our attention is focused on the Gaussian process model which can be viewed as an extension of
the kriging principles (Matheron [18], Cressie [6], Sacks et al. [23]). This metamodel which is charac-
terized by its mean and covariance functions, presents several advantages : it is an exact interpolator
and it is interpretable (not a black-box function). Moreover, numerous authors (for example, Currin
et al. [7], Santner et al. [25], Vazquez et al. [28], Rasmussen & Williams [22]) have shown how this
model can provide a statistical basis for computing an efficient predictor of code response. In addi-
tion to its efficiency, this model gives an analytical formula which is very useful for sensitivity analysis,
especially for the variance-based importance measures, the so-called Sobol indices (Sobol [26], Sal-
telli et al. [24]). To derive analytical expression of Sobol indices, Chen et al. [4] used tensor-product
formulation and Oakley & O’Hagan [20] considered the Bayesian formalism of Gaussian processes.

We propose to compare these two analytical formulations of Sobol indices for the Gaussian pro-
cess model : the first is obtained considering only the predictor, i.e. the mean of the Gaussian process
model (Chen et al. [4]), while the second is obtained using all the global stochastic model (Oakley &
O’Hagan [20]). In the last case, the estimate of a Sobol index is itself a random variable. Its standard
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deviation is available and we propose an original algorithm to estimate its distribution. Consequently,
our method leads to build confidence intervals for the Sobol indices. To our knowledge, this informa-
tion has not been proposed before and can be obtained thanks to the analytical formulation of the
Gaussian process model error. This is particularly interesting in practice, when the predictive quality
of the metamodel is not high (because of small learning sample size for example), and our confidence
on Sobol index estimates via the metamodel is poor.

The next section briefly explains the Gaussian process modeling and the Sobol indices defined in
the two approaches (predictor-only and global model). In section 3, the numerical computation of a
Sobol index is presented. In the case of the global stochastic model, a procedure is developed to si-
mulate its distribution. Section 4 is devoted to applications on analytical functions. First, comparisons
are made between the Sobol indices based on the predictor and those based on the global model.
The pertinence of simulating all the distribution of Sobol indices is therefore evaluated. Finally, Sobol
indices and their uncertainty are computed for a real data set coming from a hydrogeological trans-
port model based on waterflow and diffusion dispersion equations. The last section provides some
possible extensions and concluding remarks.

3.3 SOBOL INDICES WITH GAUSSIAN PROCESS MODEL
3.3.1 Gaussian process model

Let us consider n realizations of a computer code. Each realization y(x) of the computer code
output corresponds to a d-dimensional input vector « = (z1, ..., z4). The n input points corresponding
to the code runs are called an experimental design and are denoted as X; = (z(!),...,z(). The
outputs will be denoted as v, = (y), ...,y with () = y(z®),i = 1,...,n. Gaussian process (Gp)
modeling treats the deterministic response y(x) as a realization of a random function Y (=), including
a regression part and a centered stochastic process. The sample space 2 denotes the space of
all possible outcomes w, which is usually the Lebesgue-measurable set of real numbers. The Gp is
defined on R¢ x Q and can be written as :

Y(z,w) = f(z) + Z(z,w). (1)

In the following, we use indifferently the terms Gp model and Gp metamodel.

The deterministic function f(x) provides the mean approximation of the computer code. Our study
is limited to the parametric case where the function f is a linear combination of elementary functions.
Under this assumption, f(x) can be written as follows :

k
f(®) =Y B;fi(x) = F(z)B,
j=0

where 8 = [Bo,..., 0]t is the regression parameter vector, f; (j = 1,...,k) are basis functions
and F'(z) = [fo(x), ..., fr(z)] is the corresponding regression matrix. In the case of the one-degree
polynomial regression, (d + 1) basis functions are used :

fO(m) - 1>
filx) =a; for i=1,...,d.

In our applications, we use this one-degree polynomial as the regression part in order to simplify
all the analytical numerical computation of sensitivity indices. This can be extended to other bases
of regression functions. Without prior information on the relationship between the output and the in-
puts, a basis of one-dimensional functions is recommended to simplify the computations in sensitivity
analysis and to keep one of the most advantages of Gp model (Martin & Simpson [17]).
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The stochastic part Z(z,w) is a Gaussian centered process fully characterized by its covariance
function : Covq(Z(x,w), Z(u,w)) = o?R(x,u), where o2 denotes the variance of Z and R is the cor-
relation function that provides interpolation and spatial correlation properties. To simplify, a stationary
process (Z(z,w)) is considered, which means that the correlation between Z(z.w) and Z(u,w) is a
function of the difference between x and u. Moreover, our study is restricted to a family of correlation
functions that can be written as a product of one-dimensional correlation functions :

Covo(Z(m,w), Z(u,w)) = c’R(x —u) = o HR; T — ). (2)

This form of correlation function is particularly well adapted to get some simplifications of the integrals
in the future analytical developments : in the case of independent inputs, it implies the computation
of only one or two-dimensional integrals to compute the Sobol indices. Indeed, as described in sec-
tion 3.4.2, the application and the computation of the Sobol index formulae are simplified when the
correlation function has the form of a one-dimensional product (Santner et al. [25]).

Among other authors, Chilés & Delfiner [5] and Rasmussen & Williams [22] give a list of correlation
functions with their advantages and drawbacks. Among all these functions, our attention is devoted
to the generalized exponential correlation function :

Rep:c—u Gllml-ullpl)withal20and0<pl§2.

u::]m

where 8 = [01,...,04)" and p = [p1,...,p4)" are the correlation parameters. This choice is motivated
by the derivation and regularity properties of this function. Moreover, within the range of covariance
parameters values, a wide spectrum of shapes are possible : for example p = 1 gives the exponential
correlation function while p = 2 gives the Gaussian correlation function.

3.3.2 Joint and conditional distributions

Under the hypothesis of a Gp model, the learning sample Y follows a multivariate normal distri-
bution pa (Y | Xs) :
! PQ(YS,W|X5) :N(Fsﬁazs)>

where F, = [F(zM)t .. F(zM")] is the regression matrix and
— 52 () )
— o%R _
7 ep (m r )i\jzl...n
is the covariance matrix.

If a new point z* = (z7, ..., z};) is considered, the joint probability distribution of (Y, Y (z*,w)) is :

F ¥ k(z")
po(Ys, Y (", w)|X,, 2%, 8,0,0,p) =N ([ } 3, [ }) ) (3)
F(z*) k(z*) o

k(x*) = ( COVQ(y(l),Y(a:*,w)), L ,COVQ(g;(”’}, Y(z* w)))!

= 02( Rg,p(m(l)’ z*), ... ’ngp(w(n),m*) ).

By conditioning this joint distribution on the learning sample, we can readily obtain the conditional
distribution of Y (*,w) which is Gaussian (von Mises [30]) :

with

(4)

pa(Y (z*,w)|Ys, X5, 2*,8,0,0,p)
= N(EQ[Y(ID*,M)D/S, X8>m*>ﬁa a,@,p],\f'arQ[Y(:c*,w)i}g}Xs, m*7670>0ap]) >

(5)
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with

Eq[Y (z*,w)|Ys, Xs,*,8,0,0,p] = F(z*)B + k(z*)'=,; (Y, — FB), (6)

Varg[Y (z*,w)|Ys, X5, 2%, 8,0,0,p] = 0% — k(x*)' 3, k(). (7)

The conditional mean of Eq. (6) is used as a predictor. The conditional variance formula of Eq.
(7) corresponds to the mean squared error (MSE) of this predictor and is also known as the kriging
variance. As we obtained the distribution for a new point conditionally to the learning sample, we can
consider the covariance between two new sites. A Gp conditional to the learning sample is obtained
and denoted as follows :

(Y|Y5,Xs,ﬁ,0‘,9,p) ~ Gp( EQ[Y(m*awN}/tﬁXS)ﬁ70791p]) (8)
COVQ()/(QZ*,Q)),Y(u*,LU)lY;\,XS)ZC*,,B7U,e,p))

with the same expression for the conditional mean than Eq. (6) and
Cova (¥ (@",w), Y (u",w)|Ys, X, 8,0,0,p) = o* (Rg p(a",u*) ~ k(@) T k(w)) . (9)

The conditional Gp model (8) provides an analytical formula which can be directly used for sen-
sitivity analysis, and more precisely to compute the Sobol indices. To simplify the notations, the
conditional Gp (Y'|Ys, X5, 3, 0,8, p) will now be written in a simplified form : YGp|Y . (X w).

3.3.3 Sobolindices

Methods based on variance decomposition aim at determining the part of the variance of the
output Y () resulting from each variable z;,7 = 1,...,d. A global measure of the sensitivity of Y (x)
to each input x; is given by the first order Sobol index (Sobol [26], Saltelli et al. [24]) :

_ Vary, [Ey,,.x,Y|Xi]

5 Varx,, . x,Y]

fori=1,...,d.

These indices have been defined for deterministic functions Y of the inputs X,..., X, but, in
the case of the conditional Gp model, we have a stochastic function of the inputs. A first solution is
applying the Sobol index formula to the predictor, i.e. the mean of the conditional Gp (Eq. (6)) which
is a deterministic function of the inputs. Analytical calculations are developed by Chen et al. [4]. The
second approach that we consider consists in using the whole global conditional Gp by taking into
account not only the mean of conditional Gp model but also its covariance structure as Oakley &
O’Hagan [20] did. In this case, when the Sobol definition is applied to the global Gp model, a random
variable is obtained and constitutes a new sensitivity measure. lts expectation can be then considered
as a sensitivity index. Its variance and more generally its distribution can then be used as an indicator
of sensitivity index accuracy.

To sum up, the two approaches can be defined as follows :

— Approach 1 : Sobol indices computed with the predictor-only

S; =
Varx,, . x,EalYgp)y, x,(X:w)]

fori=1,...,d. (10)

— Approach 2 : Sobol indices computed with the global Gp model

5. () Varx, Ex, .. x,1Yq IYS)XS(X,CL))[Xé]
W) = P
EoVar, .. xiYapyy, x, (X )]

fori=1,...,d (11)
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Si(w) is then a random variable ; its mean can be considered as a sensitivity index and its
variance as an indicator of its accuracy :

EoVarx, Ex, . x,YGppy, x, Xl
pg = : fori=1,....d
i Egval‘xl ,,,, Xd[YGpiYs,Xs(X’w)]
(12)
0 VarQVarXiJExl _____ Xrl[YGple XQ(X;UJ)!Xi] ‘
o5 = v - 5 fori=1,...,d.
! (Eq arxy,.,.xy [YGp|Ys,XS(X’ w)])

Our work focuses on the computation and the study of the sensitivity indices defined following the
two approaches, respectively S; and 5 . We will also propose a methodology to numerically simulate

the probability distribution of S;. Then, a study to compare the accuracy and the robustness of the
two indices is made on several test functions and the use of the distribution of S; is illustrated to build
confidence intervals.

3.4 IMPLEMENTATION OF SOBOL INDICES
3.4.1 Estimation of Gp parameters

First of all, to build the conditional Gp defined by Eq. (8), regression and correlation parameters
(often called hyperparameters) have to be determined. Indeed, the Gp model is characterized by
the regression parameter vector 3, the correlation parameters (8, p) and the variance parameter o 2.
The maximum likelihood method is commonly used to estimate these parameters from the learning
sample (X;,Ys).

Several algorithms have been proposed in previous papers to numerically solve the maximization
of likelihood. Welch at al. [31] use the simplex search method and introduce a kind of forward selec-
tion algorithm in which correlation parameters are added step by step to increase the log-likelihood
function. In Kennedy and O'Hagan's GEM-SA software (O’Hagan [21]), which uses the Bayesian
formalism, the posterior distribution of hyperparameters is maximized, using a conjugate gradient
method (the Powel method is used as the numerical recipe). The DACE Matlab free toolbox (Lopha-
ven et al. [14]) uses a powerful stochastic algorithm based on the Hooke & Jeeves method (Bazaraa
et al. [1]), which requires a starting point and some bounds to constrain the optimization. In complex
applications, Welch’s algorithm reveals some limitations and for complex model with high dimensio-
nal input, GEM-SA and DACE software cannot be applied directly on data including all the input
variables. To solve this problem, we use a sequential version (inspired by Welch’s algorithm) of the
DACE algorithm. It is based on the step by step inclusion of input variables (previously sorted). This
methodology, described in details in Marrel et al. [15], allows progressive parameter estimation by
input variables selection both in the regression part and in the covariance function.

3.4.2 Computation of Sobol indices for the two approaches

To perform a variance-based sensitivity analysis for time consuming computer models, some
authors propose to approximate the computer code by a metamodel (neural networks in Martin &
Simpson [16], polynomials in looss et al. [10], boosting regression trees in Volkova et al. [29]). For
metamodels with sufficient prediction capabilities, the bias due to the use of the metamodel instead
of the true model is negligible (Jacques [11]). The metamodel’s predictor have to be evaluated a
large number of times to compute Sobol indices via Monte Carlo methods. Recent works based on
polynomial chaos expansions (Sudret [27]) have used the special form of this orthogonal functions
expansion to derive analytical estimation of Sobol indices. However, the modeling error of this meta-
model is not available and then has not been integrated inside the Sobol index estimates.

The conditional Gp metamodel provides an analytic formula which can be easily used for sensiti-
vity analysis in an analytical way. Moreover, in the case of independent inputs and with a covariance
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which is a product of one-dimensional covariances (Eq. (2)), the analytical formulae of S; and 1g,
(respectively Egs. (10) and (12)) lead to numerical integrals, more precisely to respectively one-
dimensional and two-dimensional integrals. The accuracy of these numerical integrations can be
easily controlled and are less computer time expensive than Monte Carlo simulations. Few analytical
developments of Sobol indices computation (for S;, pg, and a%i) can be found in Oakley & O’Hagan
[20].

3.4.3 Simulation of the distribution of S;

For the second approach where S; is a random variable, the distribution of S; is not directly
available. By taking the mean related to all the inputs except X, the main effect of X is defined and
denoted A(X;,w) :

A(Xy,w) = Exy, xaYGppy, x, (X @) Xi].

A(X;,w) is still a Gaussian process defined on R x 2 and characterized by its mean and covariance
which can be determined in an analytical way by integrating the Gp model over all the inputs except
X;. Inthe case of independent inputs, one-dimensional integrals are obtained and can be numerically
computed. Then, to obtain the Sobol indices, we consider the variance related to X; of the Gaussian
process defined by the centered main effect. This variance is written

b; ) 2
/ (A(:Chw)—/A(miaw)dnﬂ:L) dnml

with dn,, the probability density function of the input X; defined on [a; ; b;]. This last expression is a
one-dimensional random integral which has to be discretized and approximated by simulations.

The discretization of this random integral over the space of X; leads to a Gaussian vector of ng,
elements :

Vigs (W) = <A(ari,w), Ala; + M,w}, ooy Ala; + M(bi - a;),w), A(bi,w)> £
Nis Tdis

The mean and covariance matrix of this vector are computed using those of the Gaussian process
A(X;,w). The random vector V,, . is then multiplied by the matrix related to the numerical scheme
used to compute the integral (rectangle or trapeze method, Simpson’s formula ...). The Gaussian
vector obtained from this multiplication is denoted f/ndis. To simulate it, we use the well known simula-
tion method based on the Cholesky factorisation of the covariance matrix (Cressie [6]). We simulate
a ng-Size centered and reduced Gaussian vector and multiply it by the triangular matrix from the
Cholesky decomposition. Then, an evaluation of the random integral which constitutes a realization
of S; is computed from the simulation of the vector V,,,_. This operation is done k., times to obtain a
probability distribution for S.. It can be noted, that only one Cholesky factorization of the covariance
matrix of the ny.-size vector is necessary, and used for all the k,;,, simulations of S;. To determine
if the discretization number ny, and the number of simulations k., are sufficient, the convergence of
the mean and variance of S; can be studied. Indeed, their values can be easily computed following
their analytical expressions (11).

3.5 APPLICATIONS
3.5.1 Comparison of S; and 1,

To compare and study the behavior of the two sensitivity indices S; and pg,» We consider several
test functions where the true values of Sobol indices are known. Comparisons between the two
approaches are performed in terms of metamodel predictivity, i.e. relatively to the accuracy of the Gp
model, constructed from a learning sample. This accuracy is represented by the predictivity coefficient
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Q. It corresponds to the classical coefficient of determination R? for a test sample, i.e. for prediction
residuals :
o am(v-n)
QZ(Ya Y) =1- . 2
zig (7 -v)

where Y denotes the n. true observations of the test set and Y is their empirical mean. ¥ repre-
sents the Gp model predicted values. To obtain different values of Q,, we simulate different learning
samples with varying size n. For each size n, a Latin Hypercube Sample of the inputs is simulated
(McKay et al. [19]) to give the matrix X, (n rows, d columns). Then, the test function is evaluated on
the n data points to constitute (X, Y;) and a conditional Gp model is built on each learning sample.
For each Gp model built, the predictivity coefficient @0, is estimated on a new test sample of size
10000 and the two sensitivity indices S; and Jig, are computed. For each value of the learning sample
size n, all this procedure, i.e. Gp modeling and estimation of sensitivity indices, is done 100 times.
Consequently, the empirical mean, 0.05-quantile and 0.95-quantile of .5; and s are computed for
same values of learning sample size 7, and similar approximate values of Q)s.

3.5.2 Test on the g-function of Sobol

First, an analytical function called the g-function of Sobol is used to compare the Sobol indices S,
based on the predictor and the Sobol indices pg, based on the global Gp model. The g-function of

Sobol is defined for d inputs (X1, ..., X4) uniformly distributed on [0,1]% ;

d
414X, —2|+a
Gsobol( X1, - -+, Xg) = H gx(X1) where gp(Xy) = [4 Xk =2 + ax and a; > 0.
k=1 L+ a

Because of its complexity (considerable nonlinear and non-monotonic relationships) and to the avai-
lability of analytical sensitivity indices, it is a well known test example in the studies of global sensitivity
analysis algorithms (Saltelli et al. [24]). The importance of each input X is represented by the coef-
ficient ag. The lower this coefficient a;, the more significant the variable X . The theoretical values of
first order Sobol indices are known :

1
ElGEYAY
S; = dS(Ha’) fori=1,...,d.
[Ti= 3(1+ar)?
For our analytical test, we choosed =5and a, = kfork =1,...,5..

Let us recall that we study only first order sensitivity indices. For each input X;, the convergence
of S; and p¢ in function of the predictivity coefficient @5 is illustrated in figure 3.1. The convergence
of sensitivity index estimates to their exact values in function of the metamodel predictivity is verified.
In practical situations, a metamodel with a predictivity lower than 0.7 is often considered as a poor
approximation of the computer code. Table 3.1 shows the connection between the learning sample
size n and the predictivity coefficient Q2. As the simulation of a learning sample and its Gp modeling
are done 100 times for each value of n, the mean and the standard deviation of (), are indicated.
Figure 3.1 also shows how the global Gp model outperforms the predictor-only model by showing
smaller confidence intervals for the five sensitivity indices.

To sum up the convergence of the indices for the different inputs, it can be useful to consider the
error between the theoretical values of Sobol indices 5"“ and the estimated ones in L, norm :

d
errp, = » (S —5;)° (13)

i=1

where S; denotes the indices estimated with one of the two methods (S; = S; or §; = pg, )- Figure 3.2
illustrates this convergence in function of the learning sample size n and in function of the predictivity
coefficient Q,.
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Learning sample size n Predictivity coeflicient Q2

Mean Standard deviation

25 0.67 0.21
35 0.88 0.09
45 0.96 0.02
55 0.98 0.01
65 0.98 6.1073
75 0.99 4.1073
85 0.99 3.1073
95 0.99 2.1073

TAB. 3.1 — Connection between the learning sample size » and the predictivity coefficient (-
(g-Sobol function).

From Figure 3.2, we conclude that the sensitivity indices defined using the global Gp model (1)
are better in mean than the one estimated with the predictor only (S;). This difference between the
two approaches is especially significant for high values of Sobol indices like the indices related to
the first input (51 and g, ). For lower indices, these two approaches give in mean the same results.
Even if the two sensitivity indices seem to have the same rate of convergence in function of n or @),
it is important to notice that the second approach is more robust. Indeed, 1. has a lower sampling
deviation and variability than S;. Besides, this higher robustness is more S|gn|f|cant when the accuracy
of the metamodel is weak (Q), < 0.8). So, taking into account the covariance structure of the Gp model
appears useful to reduce the variability of the estimation of the sensitivity index.

3.5.3 Test on Ishigami function

We now consider another analytical function currently used in sensitivity studies (Saltelli et al.
[24]), the Ishigami function, where each of the three input random variables (X, X,, X3) follows a
uniform probability distribution on [—m, 4] :

Faa( X1, Xo, X3) = sin(X)) + 7sin?(X) + 0.1.X75 sin(X;
g 3

The theoretical values of first order Sobol indices are known :

S1 = 0.3139
Sy = 0.4424
Sz =0

Like for the g-function of Sobol, the error with the theoretical values of Sobol indices in L, norm is
computed for the two approaches for different learning sample size n and consequently for different
values of @,. As before (Eq. (13)), the diagrams of convergence are shown in figure 3.3.

As observed for the g-function of Sobol, the indices defined with the global model are still more
robust and less variable particularly for low values of Q2. However, the difference between the mean
of the two indices is not significant. For high values of the Gp model accuracy (QQ2 > 0.8), the two
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Fig. 3.1 — Convergence of sensitivity indices in function of the predictivity coefficient (), (g-
Sobol function).

approaches give the same values but the first one (with only the predictor) remains easier to compute.
So, the use of the covariance structure through the index S; seems to have a significant interest when
the Gp metamodel is inaccurate or when few data are available to avoid too much variability of the
estimated indices.

3.5.4 Construction of confidence intervals for sensitivity indices

As well as being more robust in mean, the index defined with the second approach S; has the
advantage to have a variance easy to compute. More generally, it is possible to build a confidence
interval of any level for this sensitivity index, using the methodology described in section 3.4.3 to si-
mulate its distribution. This estimation of the uncertainty on the estimation of Sobol indices is another
advantage of using the global Gp model : in practical cases with small learning sample size, only
one Gp model is constructed. The predictivity coefficient @), can be estimated by cross-validation
or leave-one-out, and if Q4 shows a low predictivity (typically less than 0.8), we wish to have some
confidence in the estimation of Sobol indices computed from the Gp model. Contrary to Gp model,
other metamodels do not allow to directly estimate the Sobol indices uncertainties due to the model
uncertainties.

To illustrate this, let us consider again the g-function of Sobol. Like in the previous section 3.5.2,
we consider different sizes of the learning sample (from n = 20 to n = 50). For each value of n, we
build a conditional Gp model and we control its accuracy estimating the @, on a test sample. We
simulate the distribution of S; to obtain the empirical 0.05 and 0.95-quantiles and consequently an
empirical 90%-confidence interval. Then, we check if the theoretical values of Sobol indices belong to
the empirical 90%-confidence interval. We repeat this procedure 100 times for each size n. Therefore,
we are able to estimate the real level of our confidence interval and compare it to the 90% expected.
The real levels obtained in mean for any size n and each input are presented in Table 3.2.

For the high values of Sobol indices (S; and S, for example), the observed levels of the 90%-
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Variable Theoretical value Mean of pg  Observed level of the empirical
of Sobol index confidence interval
X1 0.7164 0.7341 0.9381
Xy 0.1791 0.1574 0.9369
X3 0.0237 0.0242 0.5830
Xy 0.0072 0.0156 0.8886
X5 0.0001 0.0160 0.0674

TAB. 3.2 — Real observed level of the empirical 90%-confidence interval built with the Gp model
for the Sobol index of each input parameter (g-Sobol function).
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confidence interval built from the simulation of the distribution of S; are really satisfactory and close
to the expected level. In this case, the use of the global Gp model which gives confidence intervals
for Sobol indices has a significant interest. On the other hand, for very low indices (close to zero), the
Gp metamodel overestimates the Sobol indices. It explains the inaccuracy of the confidence interval.
Indeed, without a procedure of inputs selection, each variable appears in the Gp metamodel and in
its covariance. Taking into account the variance leads to give a minimal bound for the influence of all
the variables and consequently to overestimate the lowest Sobol indices. This tendency is confirmed
by the observation of the mean of pg, estimated for the three last inputs in Table 3.2.

We can make the same study with the Ishigami function for n = 30 to n = 130 which induces a
Q- varying from 0.5 to 0.95. As all the procedure (i.e. learning sample simulation, Gp modeling and
sensitivity analysis) is repeated 100 times for each size n, the convergence of the observed level of
the empirical 90%-confidence interval can be observed in function of n. Similarly, we can study this
convergence in function of Q.. Figure 3.4 shows all these diagrams of convergence. As previously
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Fig. 3.4 — Convergence of the observed level of the empirical 90%-confidence in function of
and (), (Ishigami function).

remarked on the g-function of Sobol, the 90%-confidence intervals are efficient for the high values of
Sobol indices (S, and S, for example). For these indices, the observed level of the confidence interval
converges to theoretical level 0.9. We can also notice that the predictivity quality of the Gp modeling
which is required to obtain accurate confidence interval corresponds approximately to ¢ > 0.80.
However, we judge that for Q; > 0.6, the error is not too strong and the obtained 90%-confidence
interval can be considered as a reliable and useful information. On the other hand, for very low
indices (close to zero), the problem of overestimating the Sobol indices still damages the accuracy of
the interval confidence for any size n and any Q5. This remark is particularly true when the index is
equal to zero (for example S3).
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3.5.5 Application on an hydrogeologic transport code

The two approaches to compute the Sobol indices are now applied to the data obtained from
the modeling of strontium 90 (noted ®°Sr) transport in saturated porous media using the MARTHE
software (developed by BRGM, France). The MARTHE computer code models flow and transport
equations in three-dimensional porous formations. In the context of an environmental impact study,
the MARTHE computer code has been applied to the model of %°Sr transport in saturated media
for a radwaste temporary storage site in Russia (Volkova et al. [29]). One of the final purposes is to
determine the short-term evolution of °°Sr transport in soils in order to help the rehabilitation decision
making. Only a partial characterization of the site has been made and, consequently, values of the
model input parameters are not known precisely. One of the first goals is to identify the most influential
parameters of the computer code in order to improve the characterization of the site in a judicious
way. To realize this global sensitivity analysis and because of large computing time of the MARTHE
code, a Gp metamodel is built on the basis of a first learning sample.

Data presentation
The 20 uncertain model parameters are permeability of different geological layers composing the
simulated field (parameters 1 to 7), longitudinal dispersivity coefficients (parameters 8 to 10), trans-
verse dispersivity coefficients (parameters 11 to 13), sorption coefficients (parameters 14 to 16),
porosity (parameter 17) and meteoric water infiltration intensities (parameters 18 to 20). To study
sensitivity of the MARTHE code to these parameters, 300 simulations of these 20 parameters have
been made by the LHS method. For each simulated set of parameters, MARTHE code computes
transport equations of 2°Sr and predicts the evolution of *Sr concentration for year 2010. For each
simulation, the output we consider is the value of *°Sr concentration, predicted for year 2010, in a
piezometer located on the waste repository site.

Gp modeling and computation of Sobol indices
To model the concentration in the piezometer predicted by MARTHE code in 2010 in function of the 20
input parameters, we fit a Gp metamodel conditionally to 300 simulations of the code. The regression
and correlation parameters of the Gp model are estimated by maximum likelihood and a procedure of
input selection is used. The input variables introduced in the metamodel are the sorption coefficient
of the upper layer (parameter 14 denoted kd1), an infiltration intensity (parameter 20 denoted 43)
and the permeability of the upper layer (parameter 1 denoted perl). The accuracy of the Gp model
is checked with the estimation of Q5 by a cross validation on the learning sample. The predictivity
coefficient estimated is : Q3 = 0.92. From previous study (Marrel et al. [15]), we have found that
the linear regression gives a Q2 = 0.69 and the metamodel based on boosting of regression trees
gives a ()9 = 0.83. From laboratory measures and bibliographical information, prior distributions have
been determined for the inputs kd1, i3 and perl and are respectively a Weibull, a trapezoidal and
a uniform distributions. The parameters of these distributions has been estimated or fixed a priori.
Then, using the global Gp model, the Sobol indices defined by 5 are computed (Eq. (12)) aswell as
the standard deviation o5 and the 90%-confidence interval associated (cf. methodology 3.4.3). The
results are presented in Table 3.3, with the Sobol indices obtained with the predictor-only approach
and with the boosting predictor. The use of Gp model gives a better predictivity than the boosting
of regression trees (respectively Q2 = 0.92 and @, = 0.83) and consequently a more accurate
estimation of Sobol indices. Besides, the Sobol indices estimated with the boosting model do not
even belong to the confidence intervals given by the Gp model. Even if the sensitivity indices based
on the predictor only and the ones estimated with the whole Gp model are very close, the second
approach has the advantage to give confidence intervals and consequently to have a more rigorous
analysis.

Without considering their interactions, the 3 inputs kd1, i3 and perl explained nearly 90% of the
total variance of the output and the most influent input is clearly kd1, followed by i3 and perl. So,
kdl is the most important parameter to be characterized in order to reduce the variability of the
concentration predicted by MARTHE code. Using the whole Gp model, we also have an indication
of the accuracy of Sobol indices. The standard deviation of the indices are small and increase the
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input variable Boosting of Predictor only Whole Gp model

regression trees  (Gp model)

S; S; 145, o, 90%-confidence interval
perl 0.03 0.081 0.078 0.020 [0.046 ; 0.112 ]
kd1l 0.90 0.756 0.687 0.081 [0.562; 0.825 ]
i3 0.03 0.148 0.132 0.022 [0.100; 0.170 |

TAB. 3.3 — Estimated Sobol indices, associated standard deviation and confidence intervals
for MARTHE data.

confidence in the value estimated (’ugkdl' (g, and /“‘épm)' Moreover, the very small overlap of the
90%-confidence interval of the 3 indices indicates that the order of influence of the inputs is well
determined and strongly confirms the predominance of kdl. So, the confidence intervals and the
standard deviation obtained with the whole Gp model give more confidence in the interpretation of
Sobol indices.

Taking into account the variability of the Gp model via its covariance structure gives more ro-
bustness to the results and their analysis. However, this increase of precision and confidence has a
numerical cost. Indeed, the number of numerical integrals being computed is of order O(dn?) where d
is the number of inputs and n the number of simulations, i.e. the learning sample size. The numerical
cost depends also on the numerical precision required for the approximation of the integrals. Moreo-
ver, a high precision is often essential to provide the robustness of the computation of Sobol indices,
especially when the distribution of the inputs is narrow and far from the uniform distribution (like the
Weibull distribution of kd1). In this last case, it can be judicious to adapt the numerical scheme in
order to increase the precision in the region of high density.

3.6 CONCLUSION

We have studied the Gaussian process metamodel to perform sensitivity analysis, by estimating
Sobol indices, of complex computer codes. This metamodel is built conditionally to a learning sample,
i.e. to n simulations of the computer code. The Gp model proposes an analytical formula which can
be directly used to derive analytical expressions of Sobol indices. Indeed, in the case of independent
inputs and with our choice of regression and covariance functions, the formula of Gp model leads
to one and two-dimensional numerical integrals, avoiding a large number of metamodel predictor
evaluations in Monte Carlo methods. The use of Gp model instead of other metamodel is therefore
highly efficient. Another advantage of Gp metamodel stands in using its covariance structure to com-
pute Sobol indices and to build associated confidence intervals, by using the global stochastic model
including its covariance.

On analytical functions, the behavior and convergence of the Sobol index estimates were studied
in function of the learning sample size n and the predictivity of the Gp metamodel. This analysis
reveals the significant interest of the global stochastic model approach when the Gp metamodel is
inaccurate or when few data are available. Indeed, the use of the covariance structure gives sensitivity
indices which are more robust and less variable. Moreover, all the distribution of the sensitivity index
(defined as a random variable) can be simulated following an original algorithm. Confidence intervals
of any level for the Sobol index can then be built. In our tests, the observed level of the interval was
compared to the expected one on analytical functions. For the highest values of Sobol indices and
under the hypothesis of a Gp metamodel with a predictivity coefficient larger than 60%, the confidence
intervals are satisfactory. In this case, the use of the global Gp model which gives confidence intervals
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for Sobol indices has a significant interest. The only drawback is that the use of covariance structure
has a tendency to give a minimal bound for the influence of all the variables and consequently to
overestimate the lowest Sobol indices and to give inaccurate confidence intervals for very low indices
(close to zero).

The use of covariance structure was also illustrated on real data, obtained from a complex hydro-
geological computer code, simulating radionuclide groundwater transport. This application confirmed
the interest of the second approach and the advantage of Gp metamodel which, unlike other efficient
metamodels (neural networks, regression trees, polynomial chaos, . .. ), gives confidence intervals for
the estimated sensitivity indices. The same approach based on the use of the global Gp metamodel
can be used to make uncertainty propagation studies and to estimate the distribution of the computer
code output in function of the uncertainties on the inputs.
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