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Foreword 

The work presented in this report was developed within the Integrated Project PAMINA: 
Performance Assessment Methodologies IN Application to Guide the Development of the 
Safety Case. This project is part of the Sixth Framework Programme of the European 
Commission. It brings together 25 organisations from ten European countries and one EC 
Joint Research Centre in order to improve and harmonise methodologies and tools for 
demonstrating the safety of deep geological disposal of long-lived radioactive waste for 
different waste types, repository designs and geological environments. The results will be of 
interest to national waste management organisations, regulators and lay stakeholders. 

The work is organised in four Research and Technology Development Components (RTDCs) 
and one additional component dealing with knowledge management and dissemination of 
knowledge: 

- In RTDC 1 the aim is to evaluate the state of the art of methodologies and approaches 
needed for assessing the safety of deep geological disposal, on the basis of 
comprehensive review of international practice. This work includes the identification of 
any deficiencies in methods and tools.  

- In RTDC 2 the aim is to establish a framework and methodology for the treatment of 
uncertainty during PA and safety case development. Guidance on, and examples of, 
good practice will be provided on the communication and treatment of different types of 
uncertainty, spatial variability, the development of probabilistic safety assessment tools, 
and techniques for sensitivity and uncertainty analysis. 

- In RTDC 3 the aim is to develop methodologies and tools for integrated PA for various 
geological disposal concepts. This work includes the development of PA scenarios, of 
the PA approach to gas migration processes, of the PA approach to radionuclide 
source term modelling, and of safety and performance indicators. 

- In RTDC 4 the aim is to conduct several benchmark exercises on specific processes, in 
which quantitative comparisons are made between approaches that rely on simplifying 
assumptions and models, and those that rely on complex models that take into account 
a more complete process conceptualization in space and time. 

The work presented in this report was performed in the scope of RTDC 2. 

All PAMINA reports can be downloaded from http://www.ip-pamina.eu.  
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1.- Introduction 
 
This document deals with Uncertainty and the different ways to manage it. Uncertainty is an 
essential feature present in human life. We will never know with absolute certainty what is going 
to happen in the future, e.g. how good the weather will be tomorrow. Nevertheless, human 
beings have learnt to live under conditions of uncertainty. This is possible thanks to the 
development of strategies, technologies and heuristics (such as different types of insurance, daily 
weather forecasts or investment funds) that aim to compensate for the negative effects of 
uncertainty. 
 
The scientific and technological fields are also strongly affected by uncertainty. In many cases 
the solution to a given technical problem is not readily available due to uncertainty, for example 
not knowing the theoretical model that could be applicable, or unavailability of data for whatever 
reason. In the case of the construction of a Nuclear Power Plant (NPP) or of a Radioactive Waste 
Repository, which are facilities required by society, but which also have the capability to 
threaten public health, usually several alternatives (different designs) are available, and we 
should be able to compare, in a fair way, their advantages and disadvantages. In these cases, 
expert judgement is a useful, and unavoidable, tool with which to solve the problem, filling the 
gap between the incomplete and limited information available, and the need to solve the 
problem. 
 
Expert judgement may be necessary to understand the real magnitude of the problem to hand, to 
develop appropriate system models and alternative models, and to interpret the meaning of 
available data and their application. Judgements may also be used to define the characteristics of 
different alternatives in a decision problem. In general, whenever solving an important technical 
problem or making an important decision is required, the most capable people (persons with 
well-known knowledge and proved experience) should be made available to provide their 
judgements.  
 
Given the fact that the use of expert judgement is unavoidable in the scientific and technical 
fields, the key question to answer is: should the opinions of experts be given in an implicit and 
informal way or rather in a explicit and formal way? Broadly speaking, we could say that 
informal judgements usually treat posed problems in a global way, not getting deep into the 
details. On the other hand, formal judgements get into the details of the issue under study, 
usually decomposing it in smaller and simpler, more tractable sub-issues. Moreover, when 
judgements are obtained in a more formal, structured and explicit way, they may be more easily 
documented, to facilitate further review. This may become very important when the issue under 
study is subject to review by a regulatory body, different types of associations, ecologists or any 
other potential stakeholder. 
 
Knowledge Psychology is the branch of Psychology dedicated to the study of perception, 
cognitive processes and elaboration of judgements. It has identified the existence of different 
inferential mechanisms, typically used under conditions of uncertainty, which can be misused 
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introducing biases in judgements. As a consequence, judgements given by subjects can be 
inconsistent with the information they are based on, not providing an accurate picture of the real 
subject’s uncertainty. 
 
Judgements obtained following an informal, implicit process may be of use in daily life to solve 
non-important problems and make fast decisions. This is not acceptable when we are confronted 
with important technological problems affected by uncertainty and with a potential high impact 
on our society. Under these circumstances we must use formal expert judgement processes and 
require the opinions of qualified experts in that field. Structured and documented processes to 
obtain expert judgement in a formal way are called Expert Judgement Protocols, and consist of 
several phases designed to:  
 

• train experts to provide formal opinions, 
• identify and minimise the effect of biases, 
• define the issue to be assessed with no ambiguity, 
• make available to the experts all the relevant information about the issue under study, 
• check the rationality and consistency of the opinions given, and 
• make a final verification, repeating the whole process if needed. 

 
The development of protocols and techniques to obtain formal expert opinions has been a 
consequence of the interest of many public and private organisations and individuals in 
incorporating, in the best possible way, uncertainties in their studies and decision-making 
processes.  
 
Most of the techniques and the oldest protocols described in this document have been developed 
for generic problems affected by uncertainty, and are applicable in any area of technology, 
science, business, economy, etc. Nevertheless, the nuclear safety field has also made remarkable 
contributions to the development of structured expert judgement. 
 
This report has been written within PAMINA’s RTDC2 (treatment of uncertainty), and 
specifically under Work Package 2.2, task A, topic 5 (task 2.2.A, topic 5). This activity consists 
of characterising the uncertainty about the solubility limits for some key chemical elements 
(Radium, Tin, Selenium, Uranium and Plutonium) in the near field of a generic Spanish 
Radioactive High Level Waste repository in granite. This document is expected to help experts 
participating in this activity understanding what expert judgement is, and a significant part of its 
contents will be used during the training sessions. 
 
The need to make use of formal expert judgement protocols to characterise key uncertainties in 
risk assessments for nuclear facilities will be justified in the second chapter. In Probabilistic 
Safety Assessments (PSAs) of NPPs and Performance Assessments (PA) for High Level Waste 
(HLW) and Spent Nuclear Fuel (SNF) repositories, it is quite frequent to deal with very low 
probability, high consequence events, and with datasets for crucial information that are of very 
small size. Expert judgement is vital in such situations. 
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Chapter 3 introduces a theoretical framework, the theory of Bayesian Probability, within which 
probabilistic safety studies of industrial facilities make sense and may be developed. Only within 
this framework can the use of expert judgement by justified. Chapter 4 presents the study of 
systematic errors (biases) committed by experts when giving their opinions. Biases are classified 
according to their origin as knowledge biases and motivational biases. Their origins and 
undesired effects are described. Finally, calibration curves and scoring rules, which are the main 
tools to characterise the quality of experts’ judgements, are presented.  
 
The first part of chapter 5 describes the most often used techniques to elicit the opinions of 
experts in terms of probabilities and probability density functions (or equivalently cumulative 
distribution functions) and the techniques to eliminate, or at least mitigate, the effects of biases. 
The main expert judgement protocols that have been developed are introduced in the second part 
of chapter 5. Because of its pioneering character, we introduce firstly the protocol developed by 
the Stanford Research Institute (SRI) of the Stanford University. Then we describe a protocol 
developed at Sandia National Laboratories (SNL) during the mid 1980’s. The protocol developed 
at SNL was applied extensively in the NUREG-1150 study, a remarkable step forward in the area 
of PSAs for NPPs. Some other protocols, as for example the KEEJAM protocol, developed at the 
Joint Research Centre (JRC) of the European Commission, are more briefly described. Chapter 6 
discusses to the problem of combining the opinions of several experts. Conclusions are presented 
in chapter 7.  
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2.- The need for Expert Judgement 
 
During the last decades, risk analysis has arisen as one of the most powerful tools to study, in a 
structured way, the possible effects of complex industrial facilities on people and environment.     
The most widely accepted approach to perform this type of analysis is the one proposed by 
Kaplan and Garrick (1980). These authors consider a risk analysis of any system as the 
systematic answer to the following three questions: 
 

1. What can go wrong? 
2. What’s the likelihood that things go wrong? 
3. What happens if things go wrong? 

 
Providing a formal answer to these three questions requires describing risk through the use of a 
set of triplets 
 

})(),(,{ ><= iiiii yfpsR φ     .,...,2,1 Ni = ,   (2.1) 
 
where  
 

• is  represents scenario i in the set of n scenarios considered. 
• )( iip φ is the probability density function (pdf) that characterises our state of 

uncertainty about scenario i. 
• )( ii yf is the pdf that characterises our uncertainty about the potential consequences 

induced by our uncertainty about the system parameters under the conditions of 
scenario i. 

 
According to this scheme, the first step in the process is to identify the potential scenarios that 
could affect the system performance. In the case of a PSA for a NPP, this means identifying the 
relevant Plant Damage States (PDS) and the accident sequences that may take the NPP to such 
damage states. In the case of a waste repository it means identifying the normal evolution 
scenario and the alternative scenarios. The second step consists of estimating the probability of 
each scenario-PDS (or, preferably the multivariate pdf that describes our state of knowledge 
about the occurrence of the different scenarios-PDSs). The last step consists of estimating the 
possible (adverse) consequences for each scenario. These consequences are uncertain because of 
the uncertainty that we have about the system model and the parameters required for it. In the 
next section we deal with the types of uncertainties that arise in a typical analysis of a complex 
industrial facility, e.g. a NPP under accident conditions or a radioactive waste repository. 

2.1.- Types of uncertainties 
 
Uncertainties in the development of risk analyses can be divided into two broad categories: 
Aleatory uncertainties and epistemic (or lack of knowledge) uncertainties. Aleatory uncertainties 
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are usually associated with (chemical or physical) parameters with some inherent variability. 
Aleatory uncertainties arise when an experiment is repeated several times under equivalent 
conditions and the results obtained differ from one another. An example of a parameter affected 
by this kind of uncertainty is the time to failure of a canister. We could fabricate a number of 
canisters following the same procedure and under similar production conditions and put them 
under similar physical and chemical conditions and measure the time that they take to fail. In this 
case, the variability in the results comes from the set of physical and chemical processes 
involved in the fabrication and in the operational (experimental) phases. Increasing the number 
of observations (canisters & experiments) does not decrease the aleatory uncertainty, but will 
allow us to know with more accuracy the probability density function (pdf) for the time to failure 
of the canisters, i.e. the type of pdf and the parameters that characterise it. So, for example, if that 
time follows a Weibull distribution, increasing the number of observations will allow us to know 
more accurately the minimum failure time, the standard deviation and the shape parameter.  
 
Epistemic uncertainties are related to the existence of lack of knowledge about the problem. This 
type of uncertainty affects not only parameters, but also models and scenarios. A parameter will 
be affected by epistemic uncertainty when it is not random, but we cannot measure it, either 
because it is impossible or because it is extremely expensive to do it. This type of uncertainty is 
completely different from the aleatory uncertainty. Parameters affected by aleatory uncertainty 
are fully described by their associated pdfs. In the case of parameters affected by epistemic 
uncertainty, we try to characterise our lack of knowledge about the parameter, and we do it 
through pdfs. Those pdfs summarise our opinions about what values the parameter under study 
could more likely or less likely be close to. Many parameters (coefficients) of models used in the 
area of severe accidents and in the PA of HLW repositories are affected by lack of knowledge 
uncertainty; they are not random, but we are unable to know their values, so we have to use pdfs 
to characterise them. 
 
Epistemic uncertainty affects models. Sometimes, there are several models to describe the 
behaviour of the system; some of them describe the behaviour of the system under some 
circumstances and others under other circumstances. It is not clear at all how to consider this in 
the analysis. Some authors consider appropriate to assign probabilities to the different competing 
models and to run one of them or another one according to those probabilities. Other authors 
consider the right solution to build up a meta-model that includes, as sub-models, the different 
models and run either one sub-model or another one depending on the values sampled and which 
models fit better with experimental results under those circumstances. Under any circumstance, 
only validated models, or at least non-invalidated models, should be used. Parametric studies 
with possible models could be used to obtain an estimate of the influence of model uncertainty. 

2.2.- The use of Expert Judgement 
 
The US Nuclear Regulatory Commission (USNRC or NRC) ordered in the early 1970s the first 
large scale NPP Probabilistic Safety Analysis (PSA) with formal treatment of uncertainties, the 
Reactor Safety Study (reported as document WASH-1400). This study was performed by 
Professor Rasmussen’s group and completed in 1975 (Rasmussen et al., 1975). WASH-1400 
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identified, among others, transients, small LOCAs and human errors as important contributors to 
the risk for a NPP. These three items were the key features of the Three Mile Island accident, 
which happened a few years later, in 1979. 
 
Though WASH-1400 was highly appreciated due to its pioneering character and its integral 
treatment of uncertainty, it was also subject to a lot of criticism. In fact, due to its complex 
structure, the methods developed and the importance of the conclusions, and in order to obtain a 
non-biased opinion about it, USNRC appointed a second committee, chaired by another 
academic, Professor Lewis (University of California at Santa Barbara) to review it. The results of 
this review (Lewis et al., 1975) confirmed some of the criticism already received, most 
remarkably about the treatment of common cause multiple failures and the way uncertainty had 
been represented and propagated, even the way it had been interpreted. As a consequence of this, 
when in the late 1970s, USNRC launched a programme to assess the risks associated with the 
geological disposal of Radioactive HLW, developed at SNL, uncertainty and sensitivity 
techniques were very much on the focus. 
 
In the mid-1980’s, USNRC started a new study to assess the risk associated with five 
commercial NPP in USA. The final report containing the results of this study is known as the 
NUREG-1150 report (USNRC, 1990). Among the aims of this study was the generation of 
quantitative estimates of the uncertainties affecting the risks computed, in order to avoid some of 
the criticism that were levelled at the WASH-1400 report. To achieve this objective, the 
uncertainty and sensitivity techniques developed at SNL were used. Additionally, expert 
judgement was also extensively used in order to obtain reasonable estimates and uncertainty 
measures for important parameters. Expert judgement techniques were used when limited 
information was available about the parameters. Since then, expert judgement has been 
considered an important technique in safety studies for NPPs and radioactive waste repositories. 
 

2.3.- Advantages and drawbacks of using formal expert judgement 
protocols 
 
Epistemic uncertainties must be certainly estimated in order to make a defensible risk assessment 
of any industrial hazardous facility. The only problem is to determine how such estimates should 
be obtained, either following structured, formal and well-defined processes or using more or less 
informal procedures. Bonano et al. (1990) stress the following advantages of using formal 
procedures: 
 

1. Improved accuracy of expert judgements: This is because psychological biases are openly 
dealt with, problems are defined and communication is improved. 

2. Well-thought-through design for elicitation: The procedures that are used in a formal 
expert judgement process are designed specifically for the problem being faced. The 
design relies on the knowledge concerning expert opinion, previous studies that have 
used expert judgement, and knowledge of the problem domain. Careful planning of the 
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process can substantially reduce the likelihood of critical mistakes that will render 
information suspect or biased. 

3. Consistency of procedures: The participants follow the same procedures throughout a 
study and across related studies.  

4. Scrutability: Documentation is a mandatory step of almost any formal procedure, which 
helps to ensure that various reviewers and users of the findings can understand and 
evaluate the methods and insights of the study. 

5. Communication: Establishing a formal process helps to provide for reference documents 
useful in communication and external review. A formal process also encourages 
communication and understanding among experts and analysts about the problems 
studied and the values assessed. 

6. Less delay: Projects have been delayed because critical judgements were not carefully 
obtained or documented, and a formal expert judgement process had to be designed and 
conducted before the project moved forward, DOE (1986), USNRC (1990). 

 
Nevertheless, any structured process may also impose some restrictions, such as 
 

1. Resources: There are costs in designing and implementing a formal process. 
Documentation is often more extensive with a formal process, and more resources are 
thus required. 

2. Time: The time to establish and implement a formal process may be significantly greater 
than that required for an informal process. Scheduling of participants from external 
organisations adds a layer to the effort that is not present in an internal, informal process. 

3. Reduced flexibility: Ongoing changes to the study are more difficult.  If it is necessary to 
redo part of the study, re-enacting the expert judgement process may be cumbersome and 
expensive. 

 
Taking into account these restrictions, it is not always justified to develop formal expert 
judgement procedures. Formal expert judgement procedures are expensive in terms of time and 
budget; they should only be implemented when the advantages exceed the drawbacks. In the 
NUREG-1150 study, many parameters whose uncertainties were originally intended to be 
estimated via formal expert judgement were eventually studied via informal expert judgement. 
Bonano et al. (1990) remark on the following reasons to justify the use of a formal expert 
judgement process: 
 

1. Unobtainable data: Where extensive, non-controversial data directly relevant to a 
problem are lacking and unobtainable and existing data must be supplemented with 
judgements, it may be worthwhile to obtain judgements from experts using a formal 
elicitation process. 

2. Importance of the issue: Formal methods are most appropriate when the expert 
judgements will have a major impact on the study and improvements in the quality of the 
judgements are then most worthwhile. Important issues also draw the most scrutiny. A 
formal methodology promotes documentation and communication and should be 
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employed when the issue studied is apt to receive extensive review and criticism or when 
the findings will be widely disseminated. 

3. Complexity of the issue: When a problem is complex, or when several experts are 
employed either redundantly or as a team, formal methods are appropriate. These 
methods can provide the structure so that all participants understand the methods used 
and apply procedures consistently. 

4. Level of documentation required: The critical reviews that the study will undergo, the 
variety and types of users, and the uses of the information may also suggest whether a 
formal process should be instituted. In some studies, the expert judgements may be 
important findings and, perhaps, used in subsequent studies, so formal methods are 
needed. 

5. Extent of the use of expert opinion: When expert judgements are used extensively in a 
study, formalisation of the collection and processing of that information is apt to be done 
most accurately, consistently, and efficiently using formal methods. Costs that are fixed 
regardless of the size of the effort, such as creation of forms, training, etc., may be spread 
over many assessments. 

 
These five reasons are met by a PSA of a NPP and by a PA of a radioactive waste repository. 
USNRC also prescribes the use of formal expert judgement processes when the following 
conditions are met (USNRC, 1994): 
 

1. The issues to be assessed are very important for the final result or for the regulatory 
process. 

2. When the issues to assess require a multidisciplinary approach. 
 
In the case of the PA of a radioactive HLW repository, USNRC staff (USNRC, 1996) also 
provided their opinion, based on the accumulated experience, about the conditions under which 
formal procedures should be considered (when one or more of the following apply): 
 

1. Empirical data are not reasonably obtainable, or the analyses are not practical to perform. 
2. Uncertainties are large and significant to a demonstration of compliance. 
3. More than one conceptual model may explain, and be consistent with, the available data. 
4. Technical judgements are required to assess whether bounding assumptions or 

calculations are appropriately conservative. 
 

2.4.- Remarks about the use and interpretation of expert judgement 
 
The pervasive existence of epistemic uncertainties in the modelling of complex industrial 
facilities demands the extensive use of expert judgement. Nevertheless, the use of expert 
judgement must not be indiscriminate. The main reason for using expert judgement is the 
presence of epistemic irreducible or almost irreducible uncertainties. If this is not the case, the 
use of expert judgement can be questioned. The USNRC has very clearly expressed this idea, in 
a document (USNRC, 1991 - SECY-91-242) about addressing uncertainties in the 
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implementation of the Environmental Protection Agency (EPA) HLW standards, in the following 
terms:  
 
‘The formal use of expert judgement in performance assessments is a complement, rather than a 
substitute, for other sources of scientific and technical information, such as data collection and 
experimentation’ (page E-11). 
 
So, neither available data or data reasonably obtainable, nor technical and scientific rigorous 
analysis should ever be substituted for expert judgement. The only way to make sure the rational 
and adequate use of expert judgement, in a process where its wide use is foreseen, is the 
implementation of a quality system that plans, implements, reviews and documents its use (Kotra 
et al. (1996)). 
 
A major problem encountered when working in the area of expert judgement is the widespread 
overconfidence that affects most of the experts (see chapter 4). In most of the studies there is a 
significant number of issues that are strongly affected by uncertainty and may have a strong 
impact on the results. Sometimes, the widespread diffusion of an average value, with no 
associated uncertainty ranges, may produce the illusion of accuracy, which may threaten the 
search for more and better quality information. Under these circumstances, it is important to keep 
in mind the fact that the task assigned to expert judgement is to characterise the uncertainty, not 
to reduce it. Again USNRC makes the following very pertinent remark (USNRC (1991) - SECY-
91-242): 
 
‘Expert judgement should not be considered equivalent to technical calculations based on 
universally accepted scientific laws or to the availability of extensive data on precisely the 
quantities of interest. Expert judgements are perhaps more useful when they are made explicit 
for problems in which site data are lacking, since they express both what the experts know and 
do not know’ (page E-11). 
 
It is also important to realise that the state of knowledge of an expert about an issue is always 
referred to a given time. As the expert collects new data, becomes aware of new theories, etc., 
his/her state of knowledge may change, either increasing or reducing his/her uncertainty about 
that issue. Moreover, as each expert has a given background, access to different information and 
different ways to interpret it, it is possible that their individual states of knowledge about a given 
issue may be very different. Discrepancies between experts are logical consequences of the 
uncertainty that affects issues that are studied by means of expert judgement. 
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3.- A theoretical framework for expert judgement 
 
During the last decades several new theories have arisen to deal with uncertainties, such as 
Zadeh’s fuzzy set theory, Shafer’s belief functions, Dempster’s upper and lower probabilities, 
later on unified in the Dempster-Shafer theory of evidence. Nevertheless, no one of them has 
been enough developed as to be adopted by scientists and engineers in daily activities. The 
theory of probability remains as the main tool to deal with uncertainties; in fact probability is the 
metric used to measure uncertainty. It is a well-established theory, widely known by scientists 
and engineers, who apply it systematically in many commercial and scientific projects.  
 
Nevertheless, there are still some problems related to the correct interpretation of the meaning of 
a probability; what a probability actually means and what things can be attributed a probability. 
This is very important in order to determine how both types of uncertainties (aleatory and 
epistemic) may be characterised. 

3.1.- Kolmogorov’s axioms 
 
The theory of probability may be considered as the theory of non-negative additive functions 
defined on sets, whose axioms, developed within the theory of measure, is due to Kolmogorov 
(1956). Let U be the sample space associated to a given random experiment, i.e. the set of all 
possible results of the experiment. Every subset UA ⊂  is called an event. A probability P  is 
defined as a real function that assigns probability )(AP  to event A  and satisfies the following 
properties (Kolmogorov’s axioms); 
 

1. For each event A , 1)(0 ≤≤ AP . 
2. 1)( =UP . 
3. If { } IiiA ∈ is a finite or infinite countable set of mutually exclusive sets, then 

( )∑
∈

∈ =
Ii

iiIi APAP )(U , where I is the set of indices that goes through the whole set. 

 
It is important to remark that this set of axioms provides the rules about the way to combine the 
probabilities of simple events to compute the probabilities of more complex events. Nothing is said 
about the way the probabilities of simple events are computed. In the following pages we will 
describe the three main attempts to connect probabilities and their axioms with the real world or, in 
other words, the three main interpretations of probability: Classical probabilities, Frequentist 
probabilities and Bayesian probabilities. 

3.2.- The Classical interpretation of probabilities 
 
The classical interpretation of probabilities was developed by De Moivre and Laplace (Laplace, 
1951). Both authors consider that, given a random experiment whose possible results are n 
mutually exclusive and equally likely events, and if nA of them present attribute A, then the 
probability of such event is 
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n
n

AP A=)(                                                            (3.1) 

 
Let us consider the probability of getting the result ‘2’ as a result of throwing a die. If the die does 
not show any defect, because of symmetry reasons we may deduce that there are six possible 
equally likely results, what means that the probability of such event is 1/6 (n=6, nA=1). 
 
Probabilities interpreted in this manner fulfil Kolmogorov’s axioms, though they do also show 
important drawbacks: they are completely useless when the number of possible results of the 
random experiment is infinite and when the concept of equal likelihood (biased die for example) is 
not applicable. This is the case when dealing with lack of knowledge uncertainties, what makes this 
interpretation of probability of no use in a risk analysis. 
 

3.3.- Frequentist interpretation of probability 
 
Von Mises (1957) is among the developers and most active promoters of this interpretation of 
probability. Under this interpretation, probability is the limit of a series of relative frequencies. 
Given a random experiment, repeatable many times under similar conditions, and if event A is 
one of the possible results, its probability is defined as  
 

n
n

AP A=)(       (3.2)  

 
where n is the number of times that the experiment is repeated and nA is the number of times that 
event A occurs. It is assumed that this limit does actually exist. Probabilities interpreted in this 
manner fulfil Kolmogorov’s axioms.  
 
Under this interpretation, probabilities are only meaningful when a random experiment, repeatable 
under similar conditions, may be set. Consequently these probabilities may not be assessed for one-
of-a-kind events. This type of probability may be of interest to characterise aleatory uncertainties, 
but not epistemic uncertainties. 
 
In addition to not being applicable to epistemic uncertainties, two more shortcomings are usually 
mentioned about frequentist probabilities: 
 

1. We cannot experiment infinitely; information about the relative frequency will always be 
limited. 

2. The system under study could vary over time, so that relative frequencies may also 
change over time. 
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3.4.- Bayesian interpretation of probability 
 
Bayesian methods have their origin in the work published posthumously by the mathematician 
and Presbyterian minister Thomas Bayes in 1763 (Bayes, 1958). In modern times, the 
development of Bayesian probabilities as a measure of uncertainty are due to Ramsey (1926), 
Savage (1954, 1962), Lindley (1965) and de Finetti (1964, 1974). The Bayesian interpretation of 
probability is based on three fundamental ideas: degrees of belief, coherence and 
exchangeability. 
 

• Degrees of belief 
 
The Bayesian interpretation of probability extends significantly the field of application of the 
theory of probabilities through the introduction of propositions. A proposition is an affirmation 
about the occurrence of a given event. ‘All bodies are attracted by the earth’ is a proposition. In 
the Bayesian framework, propositions and events are treated homogeneously; we may say that an 
event either occurs or does not occur and we may also say that a proposition is either true or 
false. We may say that two are mutually exclusive; equivalently we may say that two 
propositions may not be simultaneously true. The probability of an event or of a proposition is a 
measure of the degree of belief about the occurrence of the event or about the proposition’s 
truthfulness. If A is a proposition, and H is the knowledge of a person, P(A|H) represents the 
probability assigned by that person to proposition A, it is the degree of belief of that person about 
the A being true, conditional on all the knowledge of that person. If the person beliefs that A is 
true, then P(A|H)=1, if he/she thinks that it is false, then P(A|H)=0. Other values in the interval 
(0,1) represent intermediate degrees of belief about the veracity or falsehood of A. 
 
Within the Bayesian interpretation of probability, the proposition or event whose probability is 
assessed is as important as all the information used to base that probability on. If two persons 
assign different probabilities to the same event, it is because of the pieces of evidence/ 
information used to base their assessments on are different, so that the probabilities assessed are 
P(A|H) and P(A|H’), which can be different. According to Lindley (1965), if both persons share 
their knowledge via honest discussion and exchange of ideas and information, they would arrive 
at the same probability for the proposition or event: P(A|H,H’). Not all authors agree about this 
statement. Savage (1954) thinks that, even after sharing all the information available, two 
persons could disagree about the probability of the event. This is a matter still open to discussion 
and research. 
 
The most intuitive and straightforward interpretation of the probability concept is, in the opinion 
of the authors of this document, the one in terms of bets originally introduced by Ramsey (1926). 
This authors is of the opinion that if a person attributes value p to P(A|H), it means that, if that 
person were invited to participate in a bet such that he/she would get a reward S in case A were 
true, and no reward if A were false, pS would be the maximum quantity the person would be 
willing to bet. 
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• Coherence 
 
From a Bayesian point of view, there is no ‘true probability’ for a proposition; each person 
assigns probabilities to events based on their knowledge and opinions. This subjective aspect of 
Bayesian probability brought de Finetti to affirm, in the preface of his well-known book ‘Theory 
of Probability’ (de Finetti (1974)), that probability does not exist. Nevertheless, the individual 
freedom to estimate probabilities based on our own knowledge and experience is not a licence to 
make arbitrary estimations. The theory of probability requires coherence in the assessment of 
probabilities, which means that assessed probabilities must fulfil Kolmogorov’s axioms and must 
also have the transitive property. Coherence is the objective normative requirement that must be 
fulfilled by any assessor. 
 
A person is not coherent when his/her preferences do not fulfil the transitive property (de Finetti 
(1974)). Let us assume the existence of three possible alternatives a, b and c, among which we 
may choose one. The relation a<b means that alternative b is strictly preferred instead of 
alternative a. A coherent person would establish a given order of preferences, such as a<b<c. 
Had he/she chosen the order a<b, b<c, c<a, that person would be behaving as a non-coherent 
person. Assuming that preference system, the relation a<b means that, had he/she been obliged 
to take option a, and being then given the option to drop a and taking b, that person would be 
willing to pay up to a given quantity, say x, to change to option b. The relation b<c means that 
the person would be willing to pay up to a new quantity, say y, to switch from alternative b to c. 
The relation c<a means that the person would be again willing to pay up to a third quantity, say 
z, to switch from alternative c to a. The way this person set his/her preferences, he/she would be 
willing to pay up to a quantity x+y+z to go from alternative a to alternative a, which does not 
make sense. If we want to avoid situations that take us to lose with complete certainty something 
that we appreciate, we have to make sure the transitive property in our preference system. Lack 
of coherence in a set of probabilities, interpreted in terms of bets, takes us to set probabilities that 
take us with complete certainty to lose. In Bayesian scientific literature this situation is called 
‘Dutch book’. 
 
Coherence is not granted at all when subjects assess probabilities. De Groot (1988) provides the 
following example. Consider a box containing 90 balls, 30 of them are known to be red and the 
rest are blue and green, but the number of each colour is unknown. One ball is to be chosen at 
random from the box and you win a prize if you guess the colour of the chosen ball. What is your 
choice, red or green? Most people prefer to choose red, because they know they will get the prize 
with probability 1/3. Now suppose you are allowed to guess two colours and you win the prize if 
the colour of the chosen ball is one of those colours. In this situation most people prefer to 
choose blue and green, again, probably, because they know they will win the prize with 
probability 2/3. But both decisions violate the principle of transitivity. Let us call R, B and G 
respectively to the events ‘getting a red ball’, ‘getting a blue ball’ and ‘getting a green ball’. In 
the first situation, choosing red means that our assessed probabilities fulfil the following 
relations: P(R)>P(B) and P(R)>P(G). Depending on the preferences between blue and green 
balls, the global system of preferences could be either P(R)>P(B)>P(G) or P(R)>P(G)>P(B). 
Since P(R), P(B) and P(G) do not change from the first situation to the second, choosing green 
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and blue instead of red and blue means that P(G)>P(R), which is in contradiction with the 
system of preferences set under the first situation (transitivity violation). 
 
This example shows clearly that not being careful when assessing probabilities may produce a 
set of non-coherent preferences. In next chapter we will discuss several mechanisms, some of 
them very subtle, which dramatically affect the procedures used by subjects to process 
information in order to make decisions, and that may cause them to get them wrong. In next 
chapter we will also describe techniques available to help subjects assessing subjective 
probabilities. 
 

• Exchangeability 
 
De Finetti (1974) introduced the concept of exchangeability in 1931. The reason to introduce the 
concept of exchangeable events, and later on the concept of exchangeable quantities, was the 
conviction that it is impossible to learn from independent events, observations or quantities. Let 
x1, x2,..., xn be a set of random quantities (variables) that follow a given joint probability 
distribution p(x1,x2,..., xn), that represent the degrees of belief of a given person about them. The 
marginal distribution of a subset of m elements of this set is 
 

nmnm dxdxxxpxxp ⋅⋅⋅= +∫ ...),...,(),...,( 111                                               (3.3) 
 

The distribution of a subset of not yet known variables xm+1,..., xn, conditional on the quantities 
already known X1= x1,..,Xm =xm is 
 

),...,(/),...,(),...,,...,( 1111 mnmnm xxpxxpxxxxp =+                                         (3.4) 
 

If the quantities xi are mutually independent, then  
 

∏
=

=
n

i
in xpxxp

1
1 )(),...,(                                                             (3.5) 

 
so that 
 

),...,(),...,,...,( 111 nmmnm xxpxxxxp ++ = .                                                (3.6) 
 

So, no learning may be expected when working with mutually independent random quantities 
(the conditional and the non-conditional distributions are the same). The idea in the mind of 
Bayesian statisticians is that, if we are to learn from experience, there should be something in the 
predictive distributions - p(x1,x2,..., xn), that would allow us to obtain more information about 
future events as we obtain more and more data, in other words, there should be some implicit 
dependency among the studied quantities included in the probability law p(x1,x2,..., xn). 
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Since the concept of independence is too strong, de Finetti tried to find a new concept that would 
relax the conditions of independence enough as to allow as learning from experience. This 
concept is exchangeability. A set of random quantities with probability law p(x1,x2,..., xn) is said 
to be finitely exchangeable if  
 

),...,(),...,( )()1(1 nn xxpxxp ππ=                                                       (3.7) 
 
 

where π(1),..., π(n) is a random permutation of the first n natural numbers. An infinite sequence 
of random quantities is infinitely exchangeable if any of its finite subsequence is finitely 
exchangeable, or in other words, the joint distribution of any finite subset of that sequence does 
not depend on what quantities are included in the sequence but only on the number of quantities 
included. Exchangeable random quantities are those that occur in a random sequence not being 
relevant, from the point of view of the form of the joint probability function, the order they 
appear. 
 
Consider the case of flipping a coin and the sequence of possible results obtained when this 
experiment is repeated many times. Let as call xi the result of the i-th experiment, whose result 
may be either head (1) or tail (0). Let us call p(xi) to the distribution of xi and p(xj1,...xjn) and 
p(xk1,...xkn) to the joint distributions of two sequences of size n; {j1,...,jn} and {k1,...,kn} are two 
subsets of n elements of the set of natural numbers. Then p(xj1,...xjn) = p(xk1,...xkn), which means 
that the results of coin tossing are exchangeable events or quantities. So, the probability of any 
sequence of n coin tosses is the same as the one of any other sequence where the number of 
heads is the same. So, p(x1=1,x2=1,x3=0) = p(x3=1,x5=0,x9=1), which is definitely true, the 
probability of getting head in the first and second toss and tail in the third one is the same as the 
one of getting head in the first and ninth toss and tail in the fifth.  
 

3.4.1.- The Bayesian update of information 
 
From all what has been discussed so far, we may deduce that two interpretations of probability 
may be used in risk analysis and performance assessment: the subjectivist (Bayesian) 
interpretation for one-of-a-type events and propositions and the frequentist for repetitive events. 
Though effectively, both cases could be included in the first one (Bayesian interpretation) for, if 
information about relative frequencies is available, the requirement of coherence will force 
subjectivists to assign probabilities very close to the observed relative frequencies.  
 
The Bayesian interpretation of probability makes Bayes’ formula a powerful tool to update 
degrees of belief when new information is available about an event or a proposition. Let H be the 
knowledge of a person (expert), and let { } Iiiz ∈ be a partition of the sample space of events. The 
Bayesian probability attributed by an expert to a given event kz is )( HzP k . The acquisition of a set 
of new evidence H’ produces a change in the probability given by Bayes’ formula 
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= ,                                                         (3.8) 

 
where )',( HHzP k  is the ‘a posteriori’ probability of kz , )( HzP k  is the ‘a priori’ probability 
of kz and ),'( kzHHP  is the likelihood of evidence conditional on the knowledge H  and the 
occurrence of event kz . )'( HHP is the probability of new evidence conditional on previous 
knowledge, which may be considered a normalising factor, since the sum of expressions like 
(3.8) over the whole partition must be 1 (equivalently, the sum of the a posteriori probabilities of 
all the partition elements must be 1). That probability is given by 
 

∑ ⋅=
i

ii HzPzHHPHHP )(),'()'( ,                                                          (3.9) 

 
and may be ignored in any intermediate computation. So, equation (3.8) may be written as 
 

)(),'()',( HzPzHHPHHzP kkk ⋅∝ ,                                                        (3.10) 
 
which means that the a posteriori probability is proportional to the a priori probability and to the 
likelihood of evidence. 
 
Two remarkable results are obtained from (3.8 – 3.10). If the a priori probability of an event is 
zero, the a posteriori probability will remain zero, even though the evidence against it could be 
very strong. So, much care should be taken when providing a priori probabilities. Null a priori 
probabilities should be avoided, unless total evidence about the impossibility of the events or 
propositions under study is available. In English literature this is called Cromwell’s statement1. 
The second result is related to the existence of strong evidence. In that case, likelihood will be 
completely dominant and the a priori probability will be almost irrelevant (a posteriori 
probability and likelihood will be almost equal). This is the case of large sample sizes, for which 
relative frequencies and Bayesian probabilities will be almost equal. 
 
Suppose we suspect a coin is not balanced (probabilities of getting head and tail are different), 
then we toss it n times. Before starting the experiments we have no reliable information about the 
probability p of getting a head, so we choose a non-informative prior distribution )(0 pπ , for 
example a uniform distribution between 0 and 1. The prior distribution describes our state of 
knowledge about the probability that we want to study. The chosen distribution means that we 
know nothing at all about p, that is why we consider any possible value as likely as any other one 
(uniform distribution) and all the values that a probability may take (from 0 to 1). Suppose that the 
result of the experiment is r heads and n-r tails. This empirical evidence is used in Bayes formula 
to update )(0 pπ  in order to obtain a new (posterior) distribution for p 

 

                                                 
1 Gentlemen, I beseech ye, think ye, in the bowels of Christ, that ye may be wrong. Sir Oliver Cromwell 
addressing Parliament around 1651. 
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)()1()( 01 pppp rnr ππ ⋅−∝ −                                                   (3.11) 
 

where the likelihood associated to the empirical evidence is obtained from the well-known formula 
for a Bernouilli process. When n is large (strong evidence), the likelihood is almost null 
everywhere except in a small interval around p=r/n, where it reaches its peak. As an example, if 
n=30 and r=5, we obtain the following (posterior) distribution for p 
 

25511
1 )1(

)26()6(
)32()1(

)()(
)()( ppppp −

Γ⋅Γ
Γ

=−
Γ⋅Γ
+Γ

= −− βα

βα
βαπ                         (3.12) 

 
Figure 3.1 shows )(0 pπ  and )(1 pπ  for this example. When the prior distribution is non-
informative, the posterior distribution is exclusively determined by the data (likelihood and 
posterior distributions are equal). The posterior distribution is significantly different from 0 around 
p=5/30≈0.17. So, a coherent person, whose knowledge includes the observation of frequencies 
obtained from many experiments, will assign subjective probabilities close to the observed 
frequencies. 
 

 

Figure 3.1.- A priori (prior) distribution, a posteriori (posterior) distribution 
for the unbalanced coin example. The likelihood distribution is the same as 
the posterior. 

 
 
Bayesian inferential methods are most used under conditions of scarcity of data. The main steps 
of the formal process are similar to the steps of a classical inferential process: The selection of 
the probability model, the estimation of parameters and the diagnosis of the model. The main 
difference is in the estimation process, which is subject to the use of Bayes formula, as explained 
above. In the next paragraphs is an example of Bayesian estimation. 
 



  
 

 
20

Let us assume a random variable X  whose pdf is )( θXf . This pdf is completely defined by the 
parameterθ , that is unknown and we want to estimate it. In order to start this estimation process, 
under the Bayesian framework, the parameter θ  is considered as a random variable characterised 
through an a priori distribution )( Hθπ . The a priori distribution provides information about the 
values the person/expert expects θ could likely take. In order to improve our knowledge aboutθ , 
we take a sample - evidence - ),...,,( 21 nXXX=X , which will have ∏=

=
n

i iXfHP
1

)(),( θθX  as a 
likelihood function. Applying Bayes’ formula provides the a posteriori distribution to be 
assigned toθ : 
 

)(),(),( HHPH θπθθπ ⋅∝ XX ,                                                         (3.13) 
 
which is a new pdf.  
 
Let us assume the specific case of a Gaussian random variable X . Let us also assume that we do 
not know its mean, μ, though we know its variance, 2σ . Let us assume that, given our knowledge 
about it, we think that μ should have some value close to 0μ , let us also assume that μ could be, 
equally likely, larger or smaller than 0μ , and the further away from it the less likely. Under these 
conditions, a Gaussian a priori pdf forμ , with mean 0μ  and variance 2

0σ , could be justified. So that 
)( Hμπ ∼ ),( 2

00 σμN . Given a sample taken from the studied variable, its associated likelihood would 
be: 
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When putting this expression into (3.13) and after some computations, we obtain as an a 
posteriori distribution for μ 
 

),( HXμπ  ∼ ),( 2
nnN σμ ,                                                                    (3.15) 

 
where nμ  and 2

nσ  are    
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n               and             2
0

22 −−− += σσσ nn .                                       (3.16) 

 
A priori, μ was considered to take values around 0μ , while after getting the information contained 
in the sample, values considered likely are those around nμ . Additionally, the larger the sample 
size n, the closer nμ  and the sample mean, nX , will be (the larger n  the larger the information 
contained in the sample is, while the a priori information remains constant). 2−

nσ is the accuracy 
of the estimation (the sum of the accuracy of the a priori distribution, 2

0/1 σ , and the sample 
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accuracy, 2/σn ). The larger the a priori knowledge and the larger the sample size are, the larger 
the accuracy (the smaller the variance) of the a posteriori knowledge aboutμ. Figure 3.2 shows 
the normalised likelihood, and the a priori and the a posteriori pdfs assuming the following data: 

22 =σ , 140 =μ , 20 =σ  and )17 ,13 ,8 ,23 ,15 ,3(−=X . As previously described, the mean of the a 
posteriori distribution, 43.12=nμ , is between the mean of the a priori distribution, 140 =μ , and the 
point where the likelihood function reaches its maximum, 17.12=nX . With the classical 
Maximum Likelihood Method, the estimate would be: 17.12ˆ == nXμ . 

 
 

 
Figure 3.2.- A priori distribution, a posteriori distribution and likelihood 
function for the example of estimation of a Normal (Gaussian) random 
variable. 

 
 

The validity of this estimation method is supported by: 
 

1) its consistency with the way human beings learn from experience, and  
2) by its convergence to the results provided by the Maximum Likelihood Method 

when the sample size increases (after analysing the first expression in (3.16), the 
reader may check that when sample size increases, the mean of the a posteriori 
distribution converges to the sample mean, which is the estimator of μ provided 
by the Maximum Likelihood Method), independent of the election of the a priori 
pdf, except in the aforementioned case of null a priori probabilities. 

 
As a summary of this chapter, we should keep three ideas in mind about the Bayesian 
interpretation of probability and the framework that it provides to assess uncertainties. The first 
one is the extension of probabilities to propositions, the problem of measuring uncertainty about 
one-of-a-type events is now tractable, lack of knowledge uncertainties are measurable in terms of 
degrees of belief. The second one is that degrees of belief are personal, the probability of an 
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event does not exist any more, what does exist is the probability that a person attributes to an 
event, but degrees of belief are not a licence to arbitrariness, they must be based on a coherent 
preference system and must be based on empirical evidence if available and on high quality 
rationale. Finally, the third one is the unavoidable use of Bayes formula as the tool to incorporate 
new empirical evidence in our judgements and opinions. 
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4.- Biases and the assessment of experts 
 
Human beings, in their daily activities have to make judgements about parameters and events. A 
judgement is an inferential cognitive process used to reach conclusions about the quality or 
quantity of unknown things, which is based on the available information. According to the 
existing vast literature (Rohrbaugh, 1979) about cognitive processes, the creation of judgements 
is developed in three steps: 
 

1. Assignation of a given relative importance to each source of information. 
2. Development of a specific functional relation between each piece of information and 

the final judgement. 
3. Use of a specific method to integrate all the dimensions of the problem. 

 
Moreover, experimental research in knowledge psychology has reached two solid conclusions: 
human beings have a limited capability to process information and show a strong tendency to 
perceive and interpret the surrounding world in a causal manner. The limitations of human 
beings to process information have their origin in four main deficiencies: 
 

1. Our perception of information is not complete, but selective, human beings acquire only 
a fraction of all the information they have access to. 

2. We cannot process information in parallel, but sequentially over time. 
3. We do not have the capability to perform computations in an ‘optimal’ way. Instead of 

this, we use simplifying strategies, called heuristics, in order to process available 
information. 

4. Our memory capabilities are limited. 
 
Furthermore, our tendency to interpret the world in a causal manner makes our performance as 
‘intuitive statisticians’ really poor; we have real problems in identifying situations of 
randomness, and accept them as such, and in being able to apply basic results of the theory of 
probability and statistics. 
 
It has been widely tested that these limitations introduce biases in the three steps of the 
judgement creation process, which produces lack of accuracy and bias. This fact obliges us to 
identify the mechanisms used by subjects to make judgements in order to design techniques to 
improve their quality. Ideally, these techniques should be compatible with the peoples’ natural 
capabilities. 
 
The biases so far mentioned are called cognitive biases or knowledge biases. In addition to these 
biases, there are others, called motivational biases, which have to do with the potential interests 
and attitudes (economic, ideological, etc.) with respect to the results of the judgement. 
Motivational biases must also be taken into account and they can be a sufficient reason to 
disqualify some experts to participate in an expert judgement study. 
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Under the Bayesian (subjectivist) interpretation of probability, the only one compatible with 
expert judgement as a source of probabilistic statements, the probability of an event is the degree 
of belief of a person in the occurrence of such event. The probability is not, under this 
interpretation, something inherent to the event, and any estimate is valid, provided that it fulfils 
the condition of coherence and that it is based on the best available information. Nevertheless, 
when the opinions of the subjects, experts in this case, are going to be used to solve a problem of 
social relevance, as is the case of a PSA for a NPP or the PA of a radioactive HLW repository, 
any observer could ask a question about the credibility and reliability of the results obtained in a 
given expert judgement study. This fact forces us to design methods to assess the competence 
and accuracy of experts. 
 

4.1.- Cognitive biases 
 
In order to introduce cognitive biases, it is convenient to group them around three issues related 
to the aforementioned problems that people face when dealing with making judgements. The 
issues to be dealt with in the following sections are: the biases related to the use of different 
sources of information, the biases associated to the differences between causal and statistical 
reasoning and the simplifying strategies (heuristics) used to solve problems. 
 

4.1.1.- Biases related to the sources of information 
 
When people are making judgements, it is of paramount importance to analyse the information 
available and to attribute relative importance to each source. This process may be biased by a 
wrong perception of the robustness of the different pieces of information or data, which is 
usually due to wrong assessments of their abundance, consistency and reliability. Other facts 
related to the way information is presented could also have a non-desirable impact. 
 
Wrong perception of the abundance, consistency and reliability of data 
 
A basic rule in statistics is that the more data are available, the more reliable the results obtained 
from them are. As a consequence of this rule, people trust more judgements based on abundant 
sources of information. Nevertheless, this rule must be taken with caution, since it is true only 
when the sources of information used are independent; if they are redundant or correlated, their 
validity to base judgements on them is certainly lower. At the limit, if the same information is 
provided twice, it does not help gaining more confidence in the conclusions derived from it. 
Using a second copy of the same scientific paper does not provide any additional knowledge. In 
general, the situation is not so clear; usually people have several different sources of information 
with different degrees of overlap. So it is important to be aware of the possible correlation and 
overlap between the different sources of information available, especially if, as a consequence, 
other alternative sources of information are ignored. 
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Consistency has to do with the degree of concordance between the pieces of information coming 
from different sources. Consistency means that there is no disagreement between the different 
sources regarding a given concept or value, but it does not mean anything else. In some cases, 
several scientific or technical references could be very consistent regarding the acceptance of a 
given idea or value, producing a feel of robustness. This would be justified if the original sources 
were independent. If all references take the reader to a single original paper, based on rough 
estimates or not very exhaustive experimentation, or to a paper setting some conjectures instead 
of a well-proven theory, consistency is not enough to guarantee forecasting capabilities. Some 
literature is available in the area of cognitive psychology that support the idea that people 
frequently discard conflicting pieces of information instead of incorporating them to their 
judgements. Hogarth (1975) finds this strategy, the psychological reduction of information via 
discarding conflictive pieces of information, as a very useful way to reduce the anxiety produced 
by having to face uncertain events. We may conclude that consistency is a sensible strategy to 
base judgements on it, provided that it is thoroughly checked and conflicting or alternative pieces 
of information are taken into account. 
 
The reliability of data is extremely important when they are going to be used to build a 
predictive model. Reliability is a measure of how representative data are. Unreliable data have no 
predictive capability. Using data whose origin is not well known (way they were collected, 
accuracy of the measurements, etc.) to build a predictive model is very risky. In some cases the 
data could be reliable, but the model based on them could be unreliable, in that case its predictive 
capabilities would also be negligible. Consider that we have a set of data that include a given 
variable of our interest, which we would like to be able to predict in the future, and a set of 
potential explicative variables. If we build a regression model based on the method of least 
squares to explain the behaviour of the variable of interest as a function of the explicative 
variables, and we find that the coefficient of determination of the regression (R2) is very low and 
no regression coefficient appears as significant in the statistical tests, the best estimate for the 
variable of interest is its sample mean.     
 
Different interpretation of information according to the way it is presented 
 
In addition to the quantity and the quality of the data, the way they are presented is also 
important, since it may produce different opinions about their importance. The order the pieces 
of information are introduced to the people may affect their opinions. Sometimes a primacy 
effect may be observed. This happens when subjects pay more attention to the first pieces of 
information they have access to. In other cases people pay more attention to the last data 
obtained (surprise effect). The time frame and the rate subjects receive information is also 
important. People are very much influenced by their first hypotheses and the more time they take 
to get further information the more information they need to change their opinions. The clarity of 
the information accessed is also very important; badly-structured information could have a 
negative impact on the process of making judgements. 
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4.1.2.- Biases related to the causal interpretation of the world 
 
Human beings have real difficulties living in uncertain environments, where conflicting 
information is abundant, due to the anxiety that this causes. One of the ways people use to 
ameliorate this problem is to establish causal relations, so that they can make predictions based 
on those relations. As a consequence of this, people improve their capacity to find potential 
causes of events, not dedicating much effort to understand their occurrence in terms of 
probability. It is important to remind that causal and statistical relations are very different. The 
former are unidirectional, if A produces B, B does not necessarily produce A, while the latter are 
bidirectional, if A is related to B in statistical terms, B is also related to A. This characteristic of 
human beings is crucial, for their ability to give opinions in terms of probabilities depends on 
their capability to understand and use in a skilful manner statistical and probabilistic concepts. 
 
Wrong interpretation of causal relations 
 
Einhorn and Hogarth (1978) show that in order to find out the possible causes of a given event, 
people analyse the following four factors:   
 

1. The context. 
2. Imperfect indicators of causal relation (time order of events: cause first, then effect; 

covariation; space-time proximity and cause-effect similarity). 
3. Possible ways to combine context and indicators. 
4. Alternative causes and their likelihoods. 

 
When people try to imagine possible scenarios, large, detailed and coherent series of events are 
frequently considered more likely than the individual events themselves. In this case, causal 
coherence is considered as a proof in favour of the likelihood of the series of events. In some 
cases, the strength of the causal way of thinking may be so large that subjects attribute a higher 
probability to the cause followed by the effect than to the effect itself (remember that an effect 
may be produced by more than one cause), or to the occurrence of cause and effect 
simultaneously. In the latter, we are facing the risk of mixing up the probabilities of the 
intersection of cause and effect with the probability of the effect conditional on the cause 
(Hogarth, 1980). 
 
Another widespread problem derived from the causal perception of the world is the confusion of 
the inverse. In probabilistic terms this means mixing up )( yxP with )( xyP . In order to understand 
the meaning and the importance of this confusion, consider the following example taken from De 
Groot (1988). A person wishes to know if he/she has a given sickness. Then, he/she undergoes a 
medical test. The result is positive: according to it he/she has the sickness. Let us call x the event 
‘having the sickness’, and let us call y the event ‘the result of the test is positive’. )( yxP  is the 
probability of having the sickness conditional on getting a positive result to the test, while )( xyP  is 
the probability of getting a positive result in the test conditional on having the sickness. The latter 
is the one that appears in medical literature, since the test is applied to many patients that suffer the 
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sickness (the objective is to detect the sickness in sick people, not in healthy people), and the result 
registered is the fraction of positive results (which is the main reliability measure of the test). 
Fortunately, in most of the test )( xyP is close to 1. Many persons are not able to distinguish 
between )( yxP  and )( xyP , which are equal only if )()( yPxP = . Take into account that this 
condition is almost impossible to fulfil: if the test is good, most of the population should be sick to 
get )()( yPxP = . The confusion has to do with the temporal order in which events x and y are 
perceived. If the test is good, the occurrence of x almost surely implies the occurrence of y, but the 
first reliable information we get (not just a guess) is the result of the test, and the causal relation is 
interpreted reversely: the result of the test is positive so the sickness is there.  
 
Lack of capability to use intuitively statistical concepts 
 
Two important biases related to the difficulties to think in a probabilistic manner are the lack of 
sensitivity to base ratios and the lack of capability to update information. In general, when we try 
to solve a problem, we have two types of information: general information, which usually is 
acquired before the problem is set, and specific information, which usually is acquired ad hoc, to 
solve the problem. Quite frequently subjects ignore general information, which is also called 
base information or a priori information, and most of the focus is put on the specific information. 
It is worthwhile to remember that in the absence of specific information, judgements should be 
completely based on general information. The right way to use both pieces of information is to 
combine them using Bayes’ formula in order to get the a posteriori information. Nevertheless, 
Bayes’ formula is not included in the set of inferential intuitive mechanisms used by people. 
 
In order to see the effect of base information and the use of Bayes’ formula, let us take again the 
sickness example. Consider that the reliability of the test is 90%, or in other words, 
that 9.0)( =xyP . Consider also that the probability of a false positive (positive result of the test for a 
healthy person) is 1.0)( =xyP . If, as it was said in the first part of the example, the result of the test 
was positive, should we think that the probability of having the sickness is 9.0)( =yxP ? If the 
person has no additional evidence about the existence of the sickness, as suffering some of the 
symptoms or sharing on a daily basis objects with people infected (for infectious illnesses), we can 
be more optimistic. Suppose that the person asks for some statistical results at a healthcare centre 
and he /she finds out that the estimated fraction of the population that is affected by that sickness is 
10-4. Then, if we apply Bayes’ formula we find that  
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Certainly this probability is nine times larger than for any person chosen at random, since the 
positive result of the test provides some additional information, but it is still considerably smaller 
than 0.9, which was intuitively and wrongly attributed to )( yxP . This example is subject to 
criticism, since the base information that should actually be used is a matter of concern. 
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Another frequent source of error, even among educated people with some notions of probability, is 
to mix up the mean with the median. Different experiments (see Beach and Swenson (1966) and 
Spencer (1961)) in which sets of numbers were displayed to subjects, and they were then asked for 
the mean, the median and the mode, showed that subjects’ estimates had a high degree of accuracy 
when the distributions were approximately symmetric. Peterson and Miller (1964) did similar 
experiments drawing data from a population that was highly skewed. In this case the estimates for 
the median and the mode were quite accurate while the estimates for the mean were biased towards 
the median. This means that, in some cases, when subjects are asked to provide an estimate of the 
mean, they could be providing something closer to the median than to the mean. A possible reason 
for this mistake is the conceptual difficulty of assessing a sample mean, which involves a sum and a 
division versus the assessment of a median that involves only ranking the samples and counting, or 
the assessment of a mode that involves only the assessment of a region with the largest 
concentration of values. Similar results could be obtained if subjects were given histograms of the 
sample (or even plots of the theoretical pdf), estimating a mode from them is straightforward (the 
peak) and estimating the median is also relatively easy (divide the histogram in two parts with equal 
area) while estimating the mean would need computing an integral or at least a weighted sum. 
 
Subjects seem also to have poor skills to interpret the meaning of the variance and to assess the 
variance of samples. Experiments developed by Beach and Scopp (1968) show that subjects 
systematically overestimate the variance of populations with large deviations with respect to the 
mode such as bimodal or multimodal populations, which usually come from mixtures, while they 
usually underestimate the variance of populations with small deviations with respect to the mean 
and when dealing with normal populations. The underestimation of the variance is a well-known 
bias called overconfidence and it is also linked to a heuristic called anchor and adjustment, which 
will be explained in next section. Subjects have also shown poor performance estimating either very 
large or very small probabilities. Usually small probabilities are overestimated while large 
probabilities are underestimated. It is also worthwhile to mention the lack of capability of people to 
estimate the simultaneous occurrence of events and, in general, the joint distribution of several 
variables. 
 
Subjects also show a clear tendency to adjust their subjective distributions to the normal scheme. 
Winkler (1967) thinks that, in the case of people with some knowledge in mathematics, this is due 
to the stress that is put on this type of distribution in standard statistical programmes. However, 
Hogarth (1975) thinks that this is related to the tendency of people to reduce uncertainty. Symmetry, 
which is one of the most remarkable properties of the normal distribution, is one of the most 
powerful mechanisms available to human beings to reduce uncertainty. People also find easier to 
think in terms of symmetry than in terms of lack of symmetry. 
 

4.1.3.- Simplifying strategies (heuristics) 
 
When people have to make decisions under uncertainty, they must necessarily make hypotheses 
about the probabilities of involved uncertain events. People trust some simplifying strategies 
(heuristics) that turn the difficult task of assessing probabilities into a series of simple tasks. In 
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general, heuristics are quite useful and provide clear benefits to people, but sometimes they may 
produce systematic severe errors, as shown by Tversky and Kahneman (1974). These authors 
identified three fundamental heuristics: representativity, availability, anchor and adjustment. 
 
4.1.3.1.- Representativity 
 
Representativity is a heuristic used when subjects have to assess the probability that an event A 
belongs to a class B. When this heuristic is used, subjects try to figure out how much 
representative is A of B, or how much does A reminds us B. So when A represents B very well, 
the probability attributed to the fact that A belongs to class B is very large, otherwise this 
probability will be deemed small. This heuristic may be very useful in common life but serious 
wrong estimates may be derived from its blind used. It is very much related to the lack of 
sensitivity to the sample size. 
 
Lack of sensitivity to the sample size 
 
Representativity is typically used when assessing the probability of getting a given result when a 
sample is drawn at random from a population. The likelihood attributed to a possible result 
usually depends on the degree of similarity with the corresponding parameter(s) of the 
population. Consider the following example. The height of the members of a reference 
population follows a normal distribution with mean 175 cm and standard deviation 5 cm. Then, 
consider the following two experiments: 1) take a person at random from a population 
(unknown) and his/her height is 180 cm; 2) take 25 persons at random from a population 
(unknown) and their average height is also 180 cm. If subjects are asked which of the two 
samples is more likely to proceed from the reference population, many will answer that both are 
equally likely (or unlikely). This is completely wrong. People ignore the importance of the 
sample size. The fraction of the reference population whose height is 5 or more cm above the 
mean is almost 1/6. The case of the 25 people sample is quite different. The mean height of a 
sample of size 25 coming from the reference population is a random variable whose distribution 
is also normal with mean 175 and standard deviation 1 cm. 180 is 5 standard deviations far from 
the mean, which makes it a very unlikely result. 
 
Tversky and Kahneman (1974) provide another example that shows the lack of capability of 
people to take into account the sample size even when it is stressed in the formulation of the 
problem: 
 

“A certain town is served by two hospitals. In the larger hospital about 45 babies are born 
each day, and in the smaller hospital about 15 babies are born each day. As you know, 
about 50 % of all babies are boys. However, the exact percentage varies from day to day. 
Sometimes it may be higher than 50 %, sometimes lower. For a period of 1 year, each 
hospital recorded the days on which more than 60 % of the babies born were boys. Which 
hospital do you think recorded more days?” 
 

The results showed that out of the 95 interviewed subjects, 21 opted for the large hospital, 21 for 
the smaller hospital and 53 thought both hospitals recorded about the same number. In 
probabilistic terms, the number of boys born in the large hospital a given day follows a binomial 
law with parameters n=45 (number of trials – number of children born per day) and P=0.5 
(probability of success – probability of getting a boy in a birth). The number of boys born in the 
small hospital follow the same type of distribution with n=15 and P=0.5. The probability that the 
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large hospital gets more than 60% boys a given day is the probability of getting more than 27 
boys, which is 0.068, while the probability that the small hospital gets more than 60% boys is the 
probability of getting more than 9 boys, which is 0.151. Figure 4.1 shows both probabilities. As a 
consequence, the small hospital will record more such days. In general, in small samples 
deviations are smaller than in large samples in absolute terms, but they are larger in relative 
terms. 
 
 

 
Figure 4.1.- Cumulative distribution functions for the number of 
boys born per day in the small hospital (black) and in the large 
hospital (blue). 

 
 
Another example of lack of sensitivity to the sample size is what Tversky and Kahneman (1974) 
call the law of small numbers. This consists in expecting in small sequences of random events 
the same regularity as in large sequences. For example, people judge the string of coin tossing 
HTHTTH to be more likely than either the string HHHTTT or the string HTHTHT because they 
know that the process of coin tossing is random. The three sequences are equally likely to 
happen, however the first string looks more random that the other two outcomes in the opinion of 
many people. 
 
4.1.3.2.-Availability 
 
In some situations, the probability of an event is assessed according to how easy is to remember 
examples of that event. This is a very good strategy to assess probabilities since frequent events 
are more easily remembered than less frequent events. Nevertheless, the capability to remember 
the occurrence of events may be affected by factors other than the real frequency. 
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Wrong interpretation of the capability to remember 
 
When availability is used to assess the size of a set, the elements that are more easily 
remembered look more abundant than those that are not so easily remembered. The capability to 
remember events or examples may be affected by facts such as recent personal experiences, the 
occurrence of catastrophes or the attention that communication media paid to the event. 
Lichtenstein et al. (1978) show an example in which several groups of well-educated American 
citizens were asked to estimate the number of people that died in America each year due to 
different causes. They were given a datum: each year roughly 50000 Americans die due to traffic 
accidents. Figure 4.2 shows the results of the experiment. The curve in that plot is the best fit for 
the geometric means. Had they been good estimators, the curve obtained would be the diagonal 
(number of estimated and actual number of deaths approximately equal).   
 
 

 
Figure 4.2.-  Estimated number of deaths per year in USA due to 
different causes (geometric mean of individual experts’ estimates) 
versus actual number of deaths per year (Lichtenstein et al.(1978)). 

  
 
In the upper right we can see the results for cancers and coronary illnesses. These data are clearly 
underestimated. On the left we can see the results for rare illnesses and some natural 
catastrophes, whose numbers are overestimated. Only two persons died of botulism, but both 
cases appeared in all the newspapers of the country, which made them to be easy to remember. 
In the case of very frequent causes of death, people pay attention to them only when a relative or 
a friend is affected, which explains its underestimation. It is remarkable that for the less frequent 
causes of death the overestimation is of two orders of magnitude. 
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Lack of capability to imagine 
 
The capability of subjects to imagine the conditions under which a given event may happen may 
affect the estimation of its probability. This is a frequent problem when assessing probabilities of 
events.  
 
 4.1.3.3.-Anchor and adjustment 
 
When we try to assess the values that a parameter could take, usually we provide a first 
estimation (anchor), which is frequently interpreted as a measure of central tendency, such as the 
mean or the median. Later on we try to represent our uncertainty about it setting an upper and a 
lower bound. Both bounds are not usually set on themselves, but as distances to the mean 
(adjustment). This way of setting bounds for the uncertainty about a parameter is affected by the 
following problem, the first estimation has in general a very centralising effect, which quite often 
makes that the distances between the upper bound and it and between the lower bound and it be 
smaller than what would be expectable from the state of knowledge of the subjects. The 
centralising effect of the anchor has much to do with the lack of capability to imagine likely 
alternatives.    
 
Tversky and Kahneman (1974) provide the results of an experiment that shows this bias. Two 
groups of people were asked to give their estimates about the percentage of African countries 
that belonged to UNO at the time the experiment was being performed. Each group was given by 
the authors a first estimate of that percentage: 10% to the first group and 65% to the second one. 
Though these values were selected on purpose, the authors said to the subjects that the value 
given to them had been chosen at random between 0 and 100. The median of the estimates given 
by the first group was 25% while the median provided by the second one was 45%, which shows 
clearly the effect of the anchor and the insufficient adjustment even when the anchor given to the 
subjects was supposed to involve no knowledge at all (random value). Lichtenstein’s experiment 
(Lichtenstein et al. (1978)) also illustrates this bias. The authors repeated the experiment but in 
this case the datum was 1000 deaths due to electrocution. The effect of this new anchor was 
shifting the whole fitted curve downwards.  
 
Overconfidence 
 
When anchor and adjustment play a role in our judgements, the distributions provided are too 
narrow. This bias is called overconfidence. Overconfidence is easily detected when a calibration 
process is performed. These types of processes are discussed in section 4.3. 
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4.2.- Motivational biases 
 
Motivational biases are related to the existence of a predefined attitude of the experts towards the 
expert judgement exercise to be performed. The adopted attitude may be legitimate or 
illegitimate. The most important motivational biases are 
 

• Manager bias: This occurs when the value that the parameter under study could take 
is considered as a target instead of as a quantity whose uncertainty has to be 
characterised. Somehow, experts affected by this bias try to ‘optimise’ its value 
instead of estimating it. 

• Expert bias: This is a possible consequence of the expert’s reaction to be selected as 
an expert. If he/she has been selected is because he/she is expected to have real 
knowledge about the problem under study, which could be interpreted as having very 
little uncertainty. This attitude may produce a serious problem of overconfidence. 

• Conflict of interest’s bias: In some cases the expert may receive a part or even all 
his/her incomes from the organisation that is interested in performing the expert 
judgement exercise. Under these circumstances he/she could feel him/herself under 
the obligation of supporting the official opinion. In other cases, depending on the 
result of the exercise, the expert could either obtain a research project or start a new 
line of investigation or, in general, see his/her professional life modified depending 
on the results of the expert judgement exercise, which could modify his/her honest 
decision. 

• Conservatism bias: It may be twofold. In some cases the expert could know what is 
the impact of the distribution selected for a parameter on the model results, and he 
could adopt the strategy of assessing a distribution that produces a conservative 
impact on the results, instead of trying to make an assessment as accurate as possible. 
In the second case, being aware of his/her potential overconfidence, he/she could try 
to widen his/her uncertainty ranges further than what fits his/her actual beliefs. In 
general this bias is related to risk aversion personal attitudes.  

 

4.3- The assessment of experts 
 
After obtaining the subjective probability estimates from experts, it would be convenient to 
assess the reliability and quality of these estimates. In order to do this, it is necessary to design a 
method that enables us to measure such quality, which is not an easy task if we bear in mind the 
nature of subjective probabilities. According to Winkler and Murphy (1968), the quality of an 
expert’s opinions may be split in two parts: his/her knowledge about the subject under study 
(substantive expertise) and his/her ability to set his/her opinions in probabilistic terms (normative 
expertise). A good meteorologist could be very skilful at forecasting next day’s weather (good 
substantive expertise) while an analyst could be more skilful at providing normal opinions in 
terms of probabilities (good normative expertise). 
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It is widely accepted that both kinds of expertise, substantive expertise and normative expertise, 
are needed to obtain high quality judgements. Certainly, obtaining the collaboration of 
outstanding experts in the matter under study is a must; the opinion of non-experts in technical 
matters is completely useless. In fact, some experimental studies (Merkhofer (1987)) show that 
substantive expertise partially counteracts overconfidence bias. Normative expertise does also 
help counteracting overconfidence bias for being familiar with making statements in terms of 
probabilities and considerably facilitates the process of making judgements. Winkler (1967) 
shows in an exhaustive experimental study that lack of normative expertise may introduce many 
biases in the experts’ judgements. 
 
Though the concepts of substantive expertise and normative expertise are very useful to 
introduce the problem of the quality of the assessments, they are not operational concepts. The 
most straightforward way to quantify the quality of the forecasts is to compare them with the 
empirical evidence available, which is not always possible. According to this criterion, good 
experts should attribute high probabilities to events that do actually happen while they should 
attribute low probabilities to events that do not happen. Two tools are available to measure the 
quality of experts: calibration curves and the scoring rules. In both cases the information used is 
either information about past events or about events whose occurrence may be checked in the 
near future. 
 

4.3.1.- Calibration curves                 
 
An expert is deemed to be well calibrated when the event probabilities assessed fit the observed 
frequencies. So, a set of events whose probability estimate is 0.8 should happen roughly 80% of 
the times. This is the rule to build calibration curves. In most cases the questions used are 
almanac questions such as: how many inhabitants has a given country? What is the height of a 
given mountain? Or when did a historical event happen? 
 
In order to build calibration curves for discrete events, events are grouped according to the 
similarity in the assigned probabilities. Suppose that n events have been assigned a probability p, 
and nt happened. If the expert is well calibrated then p=nt/n, while both values are different 
(p≠nt/n) if the expert is not well calibrated. If this is done for each range of p, a plot like figure 
4.3 may be obtained. A well-calibrated or ideal expert will produce a calibration curve that 
follows the diagonal quite closely; an underconfident expert, who shows too much uncertainty in 
his/her assessments, will provide a very large fraction of his/her assessment close to 0.5. The 
most frequent case is the overconfident expert, who provides quite more assessments too close to 
either 0 or to 1 than what would be desirable.  
 
A similar calibration curve may also be drawn to assess the calibration of experts when they are 
assessing pdfs for continuous parameters. In that case, experts are supposed to assign pdfs to 
parameters whose real value may be easily obtained. With the information collected a plot like 
the one shown in figure 4.4 is drawn. In this plot we put estimated quantiles in the x-axis; in the 
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y-axis the fraction of assessments that the asked parameter was smaller than each given 
estimated quantile is drawn. 
 

 
Figure 4.3.- Calibration curves for an underconfident and an 
overconfident expert based on estimates of probabilities of events. 

 
 
 

 
Figure 4.4.- Calibration curve for an overconfident expert based on 
estimates of pdfs for continuous random variables. 
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Figure 4.4 shows that 45% of the times the actual value of the parameter was smaller than the 
percentile 25% of the distribution estimated. Based on the information included in the calibration 
curves, three quantities of interest may be defined: the bias in the median, the interquartile index 
and the surprise index. The latter may be divided in the upper and the lower surprise indexes. 
The bias in the median is the difference between the fraction of times that the parameter took 
values below the assessed median and 0.5. The surprise index is the fraction of times that the 
assessed parameter was either smaller than the quantile 0.01 or higher than the quantile 0.99. As 
for the discrete event calibration curve, a well-calibrated expert should produce a curve close to 
the diagonal, with a bias in the median almost null, interquartile index close to 0.5 and surprise 
index close to 0.02. An overconfident expert, such as the one whose assessments have been used 
to draw figure 4.4, produces interquartile indices considerably below 0.5 (roughly 0.2 in figure 
4.4) and surprise indices clearly above 0.02 (approximately 0.3 in figure 4.4). 

4.3.2.- Scoring rules                 
 
Scoring rules were originally designed to encourage experts to make their assessments 
correspond with their judgments.   
 
Consider a partition { } IiiE ∈ of the sample space. Consider that an expert sets the distribution 

,...),...,,( 21 irrr=r  for the partition when his/her actual judgement is ,...),...,,( 21 ippp=p . The expert 
says his/her true judgement only if pr = . A scoring rule is a function of the event that actually 
occurs and of r : the expert gets a score (reward) )(rkS when event k occurs. Then, the expected 
score obtained by the expert is ( ) ∑ ∈= )(),( rpr kkIk SpSE . A scoring rule is said to be strictly proper if 

( ) ( )),(),( prpp SESE >  for every pr ≠ . This scheme makes sure that the experts maximize their score 
only when they say their true judgments, provided that other necessary conditions such as the 
coherence of their judgments, the correct understanding of the method applied to obtain their 
opinions, the scoring rule itself and the linearity of their preferences with regard to the expected 
score. 
 
Several strictly proper scoring rules have been designed (see Matheson and Winkler (1975), De 
Groot (1988) and Morgan and Henrion (1990)). The following ones are among the most popular 
ones 
 

• The quadratic scoring rule: ∑ ∈−⋅= 22)( iIikk rrrS r  

• The logarithmic scoring rule: kk rrS  log)( =
r  

• The spherical scoring rule: ∑ ∈= 2/)( iIikk rrrS r  
 
In the case of two mutually exclusive events, the Brier score is the most used ( 2

1 )1()( −−= rrS , 
2

2 )( rrS −= ), which has been extensively applied in the field of weather forecasting. This scoring 
rule may be decomposed into three components, which respectively measure expert’s knowledge, 
calibration and resolution (capacity to discriminate between different levels of probability). All 
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these scores may be generalized for continuous parameters, for example if the expert estimates a 
pdf )(xr  for variable x, the logarithmic score would be )( log))(( xrxrS = .    
 
Matheson and Winkler (1975) have proposed a scoring rule for continuous distributions derived as 
an extension of binary events. Suppose R(x) is the distribution function given by the expert while 
F(x) is his/her real distribution function. Suppose u is an arbitrary value of X chosen by the analyst, 
which divides the range of X in two segments I1 and I2, as shown in figure 4.5. The scoring rule 
proposed is a function of the interval where X does actually takes its value and of the assessed 
cumulative distribution function R(u): 

 
{ } ))((,))(( ))(( 21 uRSuRSuRS I =                                                  (4.1) 

 
where S1 is applied if 1Ix∈ and S2  is applied if 2Ix∈ , so that the expected score is 
 

( ) [ ] ))(( )(1))(( )())(),(( 21 uRSuFuRSuFuRuFSE −+=                                (4.2) 
 
If SI is strictly proper ( ) ( )))(),(())(),(( uRuFSEuFuFSE >  for any )()( uRuF ≠ . Since the value selected 
by the analyst is not known a priori, in order to maximize the expected score, the expert has to 
provide his/her real opinion for all values. 

 

 
Figure 4.5.- Scheme used by Matheson and Winkler to develop their 
scoring rule. 

 
This scheme may be independent of the selected value u. This may be achieved by integrating the 
scoring rule over u to get 
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and the corresponding expected score becomes 
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From the very beginning of the use of scoring rules, they have also been utilized to assess the 
capability of experts. If an expert systematically gets better scores than others, he/she could be 
considered reasonably more reliable than the others. Nevertheless, this procedure to assess and 
motivate experts is also subject of criticism. According to Hogarth (1975), the use of scoring 
rules should be taken cautiously because of three reasons: 
 

1. The expert is supposed to have a ‘true’ distribution in his mind, however they usually do 
not know exactly what their true distribution is. 

2. The cost (psychological or otherwise) of making the assessment is not taken into account 
in the scoring rules, though certainly this is taken into account by subjects, who could 
consider the score not worthy of more effort. 

3. Subjects lacking a sound mathematical background do not readily understand scoring 
rules. 

 
Moreover, scoring rules seem not to be very sensitive to small deviations from the optimal 
strategy. Nevertheless, some authors such as Morgan and Henrion (1990) think that, even after 
considering the shortcommings of scoring rules, they remain as important tools to assess the 
performance of experts. 
 

 4.4.- The performance of experts 
 
Most of the experimental results available in scientific literature about biases are based on 
studies done with students providing answers to general culture questions. This is why these 
results are considered with caution by some authors. In fact, some relevant authors like Lindley 
(1988) are not surprised about the doubts some psychologists have about people as probability 
assessors, mainly if their capability is estimated through questions like ‘What is your probability 
that there are over 100,000 telephones in Ghana?’ 
 
Hogarth (1975) thinks that experts consider useful assessing probabilities only if two conditions 
are met: the issue to be solved via expert judgement should certainly be in the expert’s field of 
expertise and the assessment to be provided by him/her should improve the state of knowledge 
about the issue more that any other reasonable alternative. This author warns about the validity 
of many experimental studies that have been done in the area of knowledge psychology, which in 
many cases posed trivial issues and subjects participating in the experiments had no specific 
expertise. 
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Mullin (1986) did a series of studies with experts in the areas of electromagnetic fields and 
hydrology, obtaining opinions about their respective areas of expertise and about general culture. 
The results of these studies showed a large difference between the assessments they did when 
they worked as experts and when they worked as non-experts. When they worked as experts they 
were quite more careful providing estimates, gathering information, identifying uncertainty 
sources and building models. Two of the main conclusions of these studies were that the results 
of experiments done with non-experts could not be directly extrapolated to experts, and experts 
were usually less overconfident than normal subjects when providing their opinions. Awareness 
of biases by formal training is probably the best that can be done to avoid them, instead of 
applying some not always well-justified de-biasing techniques. 
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5.- Expert judgement elicitation techniques and protocols 
 
The need to quantify the uncertainties that appear in many technological problems, such as the 
Performance Assessment of a Radioactive Nuclear Waste Repository or the Probabilistic Safety 
Assessment of a NPP, demands the use of expert judgement. Not all uncertainties have an 
important impact on the final result of the study. Only when some non-reducible uncertainty has 
been identified as critical to the result of the study, expert judgement structured protocols should 
be used. Structured protocols are highly formal procedures designed to overcome the difficulties 
that arise in the process of obtaining the opinions of experts and enhancing the production of 
high quality expert judgements. Roberds (1992) has identified the following difficulties: 
 

• Poor quantification of uncertainty: Experts can encounter serious difficulties in 
expressing uncertainty in a coherent manner. Usually this happens when experts are not 
well trained in probability and statistics, which is essential when we take into account 
the probabilistic nature of the questions they are asked.  

• Poor problem definition: If the parameter whose uncertainty must be characterised has 
not been accurately defined, without any ambiguity, the problem posed to the experts 
will be biased from the very beginning.  

• Unspecified hypotheses: Different experts may assume implicitly different underlying 
hypotheses. If these hypotheses are not clearly stated and explained to the analysts and 
to other experts, the conditional nature of the different assessments will not be realised. 
This and the previous difficulty would end up with the same problem: each expert 
could be solving a different problem. 

• Uncorrected biases: Cognitive and motivational biases described in section 3 can 
seriously affect experts’ judgements. 

• Imprecision: The expert may be indifferent or insensitive over a range of values, which 
introduces fuzziness in his/her assessments. This may reduce the quality of the 
judgement. 

 
These difficulties are the main reasons to refine the procedure used to obtain the opinions of the 
experts. The procedure should include steps and measures to eliminate or at least reduce the 
effects of the difficulties described above. This way, the judgements given by experts will more 
closely map their real knowledge and will take into account all the information available. 
Through the implementation of a formal expert judgement protocol analysts try to:  
 

• Train experts in the coherent quantification of probabilities. 
• Identify and minimise experts’ biases. 
• Define and document, with no ambiguity, the problem to be solved. 
• Provide the expert with all the relevant available information. 
• Obtain the opinion of each expert using the most suitable techniques, which may be 

different for different experts.  
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• Check and document the rationale and the coherence of each expert in his/her 
assessments. 

• Make a final verification of the whole process, repeating it if deemed necessary.     
 
Analysts play a fundamental role in formal expert judgement protocols for they have to 
understand what information experts are using to base their assessments on and how they are 
using it, so that they may identify the problems and biases that experts could face and they could 
take specific steps to minimise the effects. 
 
In most of the protocols there is a phase in which analysts meet experts and obtain their opinions 
in terms of probabilities. In many cases, the outcome of that meeting will be the final solution 
given by the expert to the problem posed. Since experts will always be asked to give 
probabilistic statements, it is important to be able to provide them with a variety of means to map 
correctly their opinions. Many investigations have been developed in order to identify most 
efficient techniques to perform a correct mapping. Well-known analysts, based on all the 
experimental information and on their own experience, have selected a set of techniques as the 
best ones. In this chapter firstly the main elicitation techniques will be dealt with, then expert 
judgement protocols will be described in detail. 
 

5.1.- Techniques to assess probabilities and probability distribution 
functions 
 
In this subsection, a summary of the best available techniques to help experts providing their 
opinions is given. We will deal with techniques to assess probabilities of events and also to 
assess distributions for uncertain parameters, either univariate or multivariate. We will also 
discuss the advantages of training experts to counteract the effect of biases and to decompose 
problems in order to assist their analysis. 
 

5.1.1.- Techniques to estimate probabilities of events 
 
Subjects are not very used to making statements in terms of probabilities, with the exception of 
persons with some expertise in probability and statistics, and gamblers. Statements about 
probabilities are usually as imprecise as very likely, quite likely or not so likely. When an expert 
judgement exercise is planned it is because the events whose probabilities are under assessment 
are very important, some precision is expected from the experts, and preferably they are expected 
to be able to distinguish between low probabilities such as 10-4 and 10-5. In some cases, even if 
they are able to distinguish between similar likelihoods, perhaps they are not able to do it in the 
typical scale between 0 and 1. That is why some techniques have been developed to make easier 
that translation from qualitative opinions to quantitative statements. The techniques may be 
classified as direct and indirect. Direct techniques may change the scale used to assess 
probabilities in order to adapt it to the capability of the expert. Indirect techniques use the 



  
 

 
42

preferences of experts between different alternatives to derive probabilities and are very useful in 
helping subjects that are not familiar with the concept of probability. 
 
5.1.1.1.- Direct techniques 
 
The most straightforward technique of assessing a probability is to estimate it directly, but this is 
not always found as the most suitable way for some subjects; alternative other scales may be 
used. Two of these scales are the odds and the log-odds, which are 
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The odd is the quotient between the probability of the events and the probability of the 
complement of that event. The log-odd is the decimal logarithm of the odd. Figures 5.1 and 5.2 
show the scales used when those magnitudes are used to make probabilistic statements (the range 
of the odd scale is ),0[ +∞  while the range of the log-odd scale is ),( +∞−∞ . 
 
Some subjects are more capable of making probabilistic statements when they use the jargon of 
gamblers; they express their uncertainty about events via expressions such as ‘h against k in 
favour of the occurrence of the event’. When this jargon is used, the two following identities 
proceed 
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and 
 

k
hodd =                                                                          (5.4) 

 
where P is the probability of the event. When using this scale, a probability 10-3 would be 
formulated as ‘roughly 1 against 1000 in favour of the occurrence of the event’ (strictly speaking 
1 against 999). 
  
The use of odds and log-odds involves stretching the scale where probabilities are assessed, 
which should lead to an improved resolution. When the usual (linear) probability scale is used, it 
is not so easy to distinguish between probabilities such as 0.48 and 0.50, giving preference to 
‘nicer’ numbers, 0.50 in this case. This enhanced resolution could help reducing both 
underconfidence and overconfidence, though experiments performed so far have not found 
significant differences in the quality of statements when using odds and probabilities. Bearing 
this in mind, the key reason to use any of these alternative scales is how comfortable experts feel 
when using them.  
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Figure 5.1.- Relation between probability and odd. Figure 5.2.- Relation between Log-odd and 
probability (both in log scale). 

 
 
5.1.1.2.- Indirect techniques 
 
Savage (1954) believes that direct methods introduce large errors (discrepancies between 
assessed probabilities and their honest beliefs) because subjects are not good probability 
assessors; this is the reason why he proposes using methods that do not mention probabilities 
explicitly. Savage proposes a technique called ‘certainty equivalence’. This technique consists in 
proposing to the expert a game: he/she will get an economic reward if the event he/she is asked 
the probability of occurs; otherwise he/she gets no reward. Then he/she is asked up to what 
quantity of money he/she would be willing to pay in order to participate in the game. The 
probability of the event is then assessed as the quotient between the maximum quantity of money 
he/she would be willing to pay to be allowed to participate in the game and the economic reward 
(this is the interpretation of probability suggested in chapter 3 as the most intuitive one). An 
equivalent alternative is to propose the expert to choose between the next two options: getting y 
euros if the event happens and getting nothing if it does not happen or getting a quantity x (not 
higher than y) independently of the occurrence or not of the event. The quantity x is increased 
until the point when the subject has no clear preference between both choices. The probability 
assessed would be the solution of the equation 0)1( ⋅−+⋅= PyPx , which is yxP /= . 
 
De Finetti (1974) does not trust this type of technique for assessing probabilities because, in his 
opinion, probabilities become biased by the attitude of the subject towards gambling. As an 
alternative he proposes a technique called the ‘reference lottery’. The subject is confronted with 
two lotteries. In the first one he/she gets a reward x with probability P and a smaller reward y 
with probability 1-P, while in the second one he gets the reward x if the event A happens and y if 
it does not happen (see figure 5.3). The subject has to choose one of them. P is varied until when 
the subject has no clear preference between both choices, the value of P at that moment is the 
probability assessed by him/her for the event. The fact that the reward is the same in both 
lotteries is designed to remove biases produced by different attitudes towards gambling. 
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Figure 5.3.- De Finetti’s reference lottery 
 
Raiffa, due to the same reasons that brought De Finetti to propose the reference lottery, proposed 
the ‘reference urn’ method. The subject is encouraged to imagine an urn that contains balls with 
two different colours. The subject will be asked what ratio between the balls of both colours best 
corresponds with his opinion about the occurrence of a given event. Although this technique and 
the reference lottery seem appropriate to be used with subjects that do not have a good 
background in probability, many analysts find them tedious and difficult to apply in real expert 
judgement applications; they consider them useful only if either they are used to assess only a 
few probabilities or to introduce probabilistic concepts in the first steps of a protocol. 
 
The last indirect technique that deserves mention is the probability wheel. This technique helps 
in visualising probabilities and is easier to use than the reference lottery and the reference urn. 
The probability wheel consists of two coloured paper circles (each with a different colour), a 
radial cut is done in each. Then we put one of the circles on top of the other in such a position 
that both radial cuts coincide. Then a part of the upper circle is put beneath the lower one. If we 
fix one of the circles and rotate the other one around the axis perpendicular to both through their 
centres, then the fraction that both circles overlap may be controlled by means of that rotation. 
Then a pointer that may freely rotate around the same axis is set. A scale may be painted on the 
edge of the lower circle so that the fraction P of area overlapped may be seen. In order to assess a 
probability, the subject is asked if he/she prefers to get a reward as a result of the pointer 
stopping on the overlapped area after being spun, or as a result of the occurrence of the event. 
The fraction of area overlapped is varied until the point that the subject is not able to make a 
choice between both options. The fraction of area overlapped at that moment is the estimate of 
the event’s probability.  
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5.1.2.- Techniques to assess probability distributions for uncertain 
parameters 
 
The techniques to help experts in assessing probability distributions may be divided into 
techniques targeting continuous distributions and techniques targeting discrete distributions. The 
techniques used to assess continuous distributions are based on the assessment of probabilities of 
discrete events such as ‘the parameter value lies between this and that values’, and the use of 
either interpolating or smoothing techniques.  
 
5.1.2.1.- Discrete distributions  
 
In the general case, experts need to assess the probabilities of n different possible values of the 
parameter under study. These n values may be considered as n different mutually exclusive 
events. When n is too large, say 10 or larger, it is convenient to group them in a smaller set. The 
first step is to ask the expert to rank them from the most to the least probable and to provide a 
rationale to justify such ranking. Later on, the individual probabilities are assessed. Usually the 
expert is asked firstly about the probability or the odd of the most likely value. In case the expert 
does not feel comfortable giving his/her assessment in terms of either probabilities or odds, other 
alternative techniques may be used. 
 
The fact that the probability of all possible values has to add up to 1 makes it unavoidable to 
estimate the probabilities of at least n-1 values, the nth may be deduced from the normalisation 
condition, yet it is advisable to understand the whole rationale of the expert, asking him the n 
probabilities, checking the normalisation condition later on. If the estimated probabilities do not 
add 1, it is always interesting to find out the reasons for such inconsistency. Normalisation may 
always be easily achieved, the normalisation constant k being obtained by solving the equation 

1)( 1 =∑ =
= i

ni
i pk .  

 
Lindley et al. (1979) have proposed another normalization technique based on Bayesian inference. 
Suppose that an expert assesses the incoherent distribution { }qq,  for an event ( 1≠+ qq ), though 
he/she has a true coherent distribution { }ππ , . If the analyst has an a priori distribution )(πP  for the 
possible values, then Bayes’ formula may be used to incorporate evidence q in order to obtain the a 
posteriori distribution  
 

)()/()/( πππ PqPqP ⋅∝                                                       (5.5) 
 
The likelihood )/( πqP  represents the opinion of the analyst about the expert’s normative 
knowledge, while the a priori distribution )(πP  may be computed as AA pAPpAP ⋅+⋅ )/()/( ππ , 
where { }AA pp ,  is the distribution attributed to events A  and A  by the analyst and )/( AP π  and 

)/( AP π  show his/her opinion about expert’s knowledge about the issue under study. The true 
expert’s opinion π , may be estimated as the expected value (mean) of the a posteriori distribution 

)/( qP π : )/(ˆ qE ππ =  
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This approach may be generalised to the case of a set of events/discrete values whose assessed 
distribution { }nqq ,...,1=q  is not coherent. Let us assume that each element iq  of q  is normally 
distributed around the true corresponding expert opinion iπ  of  { }nππ ,...,1=π  with variance 2σ and 
suppose that all those distributions are independent. Assuming that the analyst has a non-
informative a priori distribution, then the a posteriori distribution is equal to the likelihood   
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with the following variances 
 

21  )1()ˆvar( σπ −−= ni                                                                  (5.8) 
 
where we can see that the improvement in accuracy due to imposing coherence is appreciable only 
when n is small. 
 
5.1.2.2.- Continuous distributions 
 
Two techniques are available to assess continuous distributions for uncertain continuous 
parameters: the quantile technique and the interval technique. The first of them is based on fixing 
probabilities and asking experts about the corresponding values of the parameter, while the 
second one consists in fixing values and asking about probabilities. Sometimes both techniques 
are combined in the same elicitation session. Other more complicated techniques, which require 
higher than average statistical skills can also be used, but some authors believe that these are not 
always well understood by subjects.  
 

• The quantile technique 
 
Given a random variable X with distribution function F(x), its quantile q is the value xq such that 
X takes values equal to or smaller than it with probability q, i.e.: F(xq)=q. xq may also be called 
percentile 100·q %. The quantile 0 is the lower bound of the parameter under study and the 
quantile 1 is the upper bound. Quantile 0.5 is the median. The cumulative distribution function of 
X consists in plotting q versus xq. 
 
The application of these techniques begins by asking the expert about the upper and lower 
bounds of the parameter. If the expert is not able to provide such absolute bounds, then analysts 
ask about quantiles 0.99 and 0.01, or 0.95 and 0.05, depending on how comfortable the expert 
feels in estimating extreme values. It is important to combine these direct questions with others 
oriented to counteract overconfidence. These kinds of questions should encourage the expert to 
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think of conditions under which the parameter could take values outside the boundaries 
previously assessed and the likelihood of such conditions. It can be very beneficial for the 
analysts to help the expert in imagining such situations either by ‘digging’ into the problem or 
providing examples that came up in similar expert judgement applications. Einhorn and Hogarth 
(1978) note that experts frequently make good use of this type of help. In general, thinking of 
alternative conditions help experts in broadening their uncertainty ranges. 
 
Once the upper and lower bounds, or some given extreme quantiles have been assessed, then the 
analyst asks about the median. The expert is asked about a value that could be equally likely 
smaller or larger than the actual value of the parameter. It is important to see how far this 
estimate is from the previously estimated bounds or extreme quantiles. If the estimate is more or 
less in the middle, this could mean that the expert is just taking the mean of the extreme values or 
considering some kind of implicit symmetry. Medians too close to some of the bounds could also 
indicate a poor original definition of the bounds. The expert should be asked about the reasons 
for providing that estimate for the median. Later on, quantiles 0.25 and 0.75 are addressed using 
similar questions. More quantiles may be assessed, but five quantiles are usually enough to draw 
an approximate cumulative distribution. The shape of the curve should be discussed with the 
expert in order to uncover potential inconsistencies. It is also useful to draw the pdf and show it 
to the expert, since features like the symmetry or lack of symmetry of the distribution are easier 
to see in the pdf than in the cumulative distribution. 
 
It is important to address extreme quantiles and absolute bounds as the first steps of the 
elicitation session. In the first applications of this technique the bisection method became very 
popular. It consists of asking firstly for the median, asking then for the 25% and the 75% and so 
on. Nowadays this method has been abandoned because it was experimentally shown that asking 
firstly for the median converts this estimate into an anchor that quite frequently led to 
overconfidence. 
 

• The interval technique 
 
In order to apply this technique, the analyst selects some values and asks the expert about the 
probability that the parameter is located within the different intervals defined using those values. 
There are two types of intervals to define: open intervals and closed intervals. In the first case the 
analyst selects a point and asks the expert the probability of the value of the parameter being 
smaller (or larger) than it. In the second case the analyst selects two points and asks the expert 
the probability that the value of the parameter be inside the defined interval. If the expert finds 
difficulties in giving his/her opinions in terms of probabilities, the analysts can help him/her 
using indirect techniques. 
 
In both cases (open and closed intervals), in order to avoid overconfidence due to introducing an 
anchor given by a first estimate about a central value, the analyst starts by posing questions 
related to very extreme values, that should correspond to quantiles such as 0.01,0.05, 0.95 and 
0.99, or even to absolute bounds. Later on, some other interior points are selected, usually 
between three and seven, depending on the degree of accuracy required, and the analyst asks the 
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expert questions based on them. Each answer given by the expert must be supported by some 
rationale, and the expert should be confronted with conflicting data and with hypothetical 
situations not considered or mentioned in his/her rationale. When the closed interval option has 
been selected, another convenient task to do is to ask the expert to rank from the most likely to 
the least likely a number of intervals whose limits are set using the group of values selected. 
With the information obtained from the expert the cumulative distribution functions and the 
corresponding pdfs are built and results are discussed to check consistency.  
 

• Other techniques 
 
From a statistical point of view, the most straightforward method in characterising the 
uncertainty associated to a given parameter is to ask directly either the pdf or the cumulative 
distribution function. Two possible options are to provide him/her with graph paper or a specific 
software program to assist the expert in drawing the distribution. Both functions present 
advantages and drawbacks in characterising uncertainty. The cumulative distribution function is 
easy to assess due to its direct interpretation, allowing the fast identification of quantiles of 
interest. On the other side, the pdf is very useful for seeing characteristics related to the 
symmetry (or lack of symmetry) of the distribution, as for example the location of the mode. The 
use of specifically developed software to plot pdfs and cumulative distributions may be very 
useful to get very fast graphical feedback from qualitative statements related to the shape of the 
distribution.  
 
Another method to generate the distributions, which should be used only with experts with a 
proved background in statistics, is to estimate directly the probability law (Gaussian, Weibull, 
Exponential, etc.) and its parameters (the mean and the standard deviation for the Gaussian 
distribution, the scale and shape parameters for the Weibull distribution, the expected value for 
the exponential, etc.). 
 
Winkler (1967) has proposed two techniques, the equivalent prior sample (EPS) and the 
hypothetical future sample (HFS) to estimate the probability of an event using a Bayesian 
approach, see also Garthwaite et al. (2005). In both cases the beta distribution plays a central role 
in the estimation process. The author also reports about the difficulties encountered by experts in 
applying these techniques. Nevertheless, they could be of use if experts with enough knowledge 
in statistics participate in the exercise. 
 
Hampton et al. (1973) reports about an indirect method developed by Smith (1967) to build pdfs 
called psychometric classification. This method consists in dividing the range of values that a 
parameter may take into several segments, say n, and ask the expert to rank them from the most 
to the least probable. Later on he/she is asked to rank from the largest to the smallest the 
differences in probability between the different segments. Pay attention to the fact that 
probabilities are not assessed at all; they and their n-1 differences are only ranked. Then, using a 
method suggested by Kendall (1962), firstly relative likelihoods between segments are assessed, 
then the actual probabilities are derived and the corresponding histograms are plotted. From the 
histograms, pdfs may also be derived. Experimental results confirm the precision and reliability 
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of this method, producing more spread distributions. Nevertheless, Morgan and Henrion (1990) 
think that the results obtained are more related to the data treatment process than to the 
assessments of the experts, in their opinion the method involves a recalibration of the experts. 
Hampton et al. (1973) consider that both rankings used, specially the second one, lack of any 
psychological and intuitive meaning, and are difficult to assess by experts. 
 

• The selection of the technique 
 
The results of experimental studies used to compare techniques are not conclusive, and in some 
cases they reach contradictory results. The final selection of the techniques should be based on 
the issue under study and the experience and preferences of experts. The most widely used 
techniques are the quantile and the interval technique due to the fact that subjects easily 
understand them. The other more mathematical techniques are not so frequently used. 
 
There is some empirical evidence that the interval technique produces more spread and better 
distributions than the quantile technique. So an advisable strategy is to combine both in the 
elicitation sessions to check the consistency of the assessments generated. Assessments obtained 
using one of the techniques may be used to ask questions based on the other technique. 
 

 5.1.3.- Techniques to assess multivariate probability distributions 
 
Given all the scientific literature available about the cognitive capability of human beings and 
their deficiencies, it is not a surprise to learn about the serious difficulties encountered in 
detecting dependency and correlation structures. Assessing multivariate distributions is a task 
that, in general, cannot be performed without the use of techniques to simplify it. 
 
In the case of two discrete variables that may take the values nxx ,...1 and myy ,...1 , the easiest way to 
estimate their joint distribution is to estimate the marginal distribution of one of them, say P(xi), 
and the corresponding n associated conditional distributions P(yj|xi) then, bearing in mind the 
relation between marginal conditional and joint distributions, we may get the joint distributions as 
P(xi, yj)= P(xi)·P(yj|xi). Both, conditional and marginal distributions are assessed by means of the 
techniques described in section 5.1.2.1. In some cases, there could be some causal relation between 
X and Y, for example X could be the cause and Y the effect.  Because subjects find it fits better their 
way of thinking, it is then convenient to assess P(Y|X) (causal inference) instead of P(X|Y) 
(diagnostic inference). Nevertheless, quite frequently subjects perceive first the effect, then the 
cause. In this case subjects could find easier to estimate P(X|Y) and use Bayes’ formula to estimate 
P(Y|X). It is convenient under these circumstances to inform the expert about the possibility of 
being affected by the confusion of the inverse bias.  
 
When the number of discrete variables is higher, the assessment of the joint distribution becomes 
more difficult, then it is convenient to use other techniques such as probabilistic influence 
diagrams, which provide an adequate framework to model problems where dependence and 
statistical relations between random variables appear simultaneously. A probabilistic influence 
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diagram (Barlow (1988)) is a directed acyclic graph that provides a graphical representation of the 
relations existing among the random variables that concur in a given problem (see figure 5.4). 
Variables are represented inside circles called nodes, which are connected with other nodes by arcs 
that denote possible statistical dependence. Associated with each node is a conditional probability 
function. Conditioning is only with the immediate predecessor nodes, which is indicated by the 
direction of the arrow. In figure 5.4 (a) Z is the predecessor variable of X and Y, which indicates 
that theses two variables are conditionally dependent on Z, and are conditionally independent with 
one another. Conditional independence means that X|Z and Y|Z are independent, which does not 
necessarily mean that X and Y be independent. The existence of no arc connecting two nodes that 
have a common predecessor means conditional independence. Nodes that are not targeted by any 
arrow are always unconditionally independent. In figure 5.4 (b) X and Y are unconditionally 
independent, while Z is conditionally dependent on both. Figures 5.4 (a) and 5.4 (b) lead to 
different ways to compute the joint distribution of X, Y and Z; in the first case P(X,Y,Z)= 
P(Z)·P(X|Z)·P(Y|Z), while in the second case P(X,Y,Z)= P(X)·P(Y)·P(Z|X,Y). The theory of 
probabilistic influence diagrams is highly developed and may be of help in analysing complex 
problems via expert judgement. 
 

Figure 5.4 (a).- Influence diagram. X and Y are 
conditionally independent. Both are conditionally 
dependent on Z. 

Figure 5.4 (b)- Influence diagram. X and Y are 
independent. Z is conditionally dependent on both X and 
Y. 

 
 
When multivariate continuous distributions have to be assessed, the ranges of the variables need 
to be divided into several intervals and those intervals treated as if they represented individual 
values of discrete variables. Kadane et al. (1978) have developed a computer assisted method to 
assess multivariate normal distributions using the quantile technique. Chaloner and Duncan 
(1987) have also proposed a method to assess multinomial distributions. In some cases, knowing 
the linear dependence between two variables is the objective. This may be assessed through the 
estimation of their correlation. Gokhale and Press (1982) have proposed two methods based in 
assessing the probability of concordance and of exceedance to assess the prior distribution for the 
correlation coefficient of a bivariate normal variable. 
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5.1.4.- Helping experts to provide their judgements 
 
Two activities have shown their importance and efficacy in helping experts providing their 
judgements: decomposing the problem and training the experts in assessment techniques. 
 
5.1.4.1.-Decomposition 
 
This strategy consists of decomposing the quantity of interest into others that are simpler to 
assess. Later on, after obtaining the distributions of the simpler variables, they are aggregated to 
get the distribution of the original quantity. A simple decomposition of a problem could be as 
follows: Suppose we want to estimate the number of cows in a given country. It could be 
interesting to decompose it as number of cows = (number of inhabitants) · (annual per capita 
consumption of milk per year) / (average annual production of milk per cow). This 
decomposition would be meaningful if obtaining the data corresponding to the disaggregated 
variables would be easier than obtaining the data corresponding to the variable of interest. 
 
Judgements obtained via decomposition may represent more accurately the actual state of 
knowledge about the problem, because simpler assessments are frequently more accurate due to 
a better calibration. Though the usefulness of this strategy is supported by general principles in 
the area of cognitive psychology, a lot of experimentation is still needed to find out the set of the 
circumstances under which decomposition is beneficial and what is the optimal level of problem 
decomposition. Nevertheless, this strategy has become one of the most popular ones and is 
applied by analysts extensively. 
 
Mosleh et al. (1988) reviewed a large quantity of expert judgement applications. They found that 
in many of these applications, decomposition was applied in a very coarse fashion, even in 
situations when it was completely meaningless. They point out three situations in which 
decomposition may be most effective: 
 

• There is much uncertainty, 
• A relevant theory exists for certain aspects of the problem under study, 
• Different experts have information about different aspects of the problem. 

 
Regarding the optimal level of decomposition, Bonano et al. (1990) show that it does not payoff 
to decompose the problem beyond a given optimal level. That optimal level is obtained as a 
balance between the number of assessments to perform, the complexity of the decomposition and 
the computational complexity of the aggregation. The analyst plays a key role in determining 
that optimal level. Mosleh et al. (1988) think that decompositions developed by the experts 
themselves, without the help of the analyst, are very interesting for they allow deeper insights 
about expert’s rationale and help the experts to become more comfortable with the whole 
assessment process. 
 
The computational aggregation of the assessed variables obtained via decomposition demands 
knowledge of the functional relation between them and the quantity of interest )(xfy = . If f is a 
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simple function the aggregation may be done analytically, otherwise Monte Carlo simulation is a 
simple way to do it. 
 
5.1.4.2.- Training in assessment techniques 
 
Overconfidence is probably the most serious threat to the quality of expert judgement 
applications and though different techniques perform differently, no one guaranties good 
performance. Morgan and Henrion (1990) reviewed a large number of experimental studies 
about the assessment of continuous distributions and the corresponding calibration curves. They 
found that the interquartile range varied between 20% and 40%, while the surprise index varied 
between 5% and 40%. As is known, they should approximately be 50% and 2% for a well 
calibrated expert. Most analysts believe that training experts in providing their judgements may 
help in reducing overconfidence and increasing accuracy. This happens because experts 
experience a feedback process that helps them to understand the different techniques and to 
improve the inferential process they use to generate their assessments. In fact, according to 
results of knowledge psychology, human beings are adaptive organisms that use different 
strategies to make their judgements according to the issue being assessed. 
 
Obtaining feedback during training sessions and observing how the quality of judgements 
improves across a series of iterations is very interesting. Either scoring rules or calibration curves 
may be used. It is also convenient to have a short discussion with the expert after each 
assessment to discuss the problems encountered. Nevertheless, there is no empirical evidence 
about what should be the characteristics of a good training programme; we only have the 
experience of many analysts and the idea that it is necessary and useful. A problem related to 
training experts is that it is a time and budget consuming process.   
 

5.2.- Expert judgement protocols 
 
Several expert judgement protocols are available in the scientific literature. In this section we are 
going to describe the following ones: the Stanford Research Institute protocol (SRI protocol), the 
SNL/NUREG-1150 protocol and the Knowledge Engineering Methodology for Expert Judgment 
Acquisition and Modelling (KEEJAM protocol) developed by JRC-Ispra. Protocols may be 
classified according to what types of opinions are targeted in the elicitation sessions, individual 
opinions or group opinions. Protocols whose objective is obtaining group judgements are 
described in next chapter. 
 

5.2.1.- The Stanford Research Institute (SRI) protocol 
 
This is the first structured protocol developed to obtain individual expert judgements and can be 
considered as the precursor of most of the others. It was developed in the 1960’s and 1970’s by 
the Decision Analysis Group of the SRI (Stanford University). Other protocols, as for example 
Delphi, were developed earlier, but they are group opinion protocols. The protocol was originally 
divided in five phases, though it was further enlarged (Merkhofer, 1988), after the dissolution of 
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the Decision Analysis Group, with the inclusion of two more phases to deal with the combination 
of several experts’ opinions and the discretisation of the assessed distribution. In this protocol, 
the process to obtain the opinion of the experts is considered as the joint task of an analyst and an 
expert. A description of the protocol follows: 
 

• Phase 1: Motivating 
 
The objective of this phase is a first contact with the expert in order to inform him/her about 
what is expected from him/her and to find out if there is any risk of encountering motivational 
biases. 
 
Firstly, the analyst explains to the expert the general problem to be solved and the context in 
which his/her opinions are meaningful. The expert is informed about the importance that 
sensitivity analyses performed attribute to the parameter or event under study, he/she is also 
informed about the way the opinions provided will be used within the general problem. Then the 
expert is informed about the fact that the objective is not to forecast a single value but to 
characterise the uncertainty about the parameter of interest. This is very important, especially if 
during the conversation the analyst detects the possibility of facing either manager or expert bias. 
 
The next step is to discuss openly with the expert about the possibility of being affected by some 
other motivational biases. If any of them is detected, the analyst has to take some steps to 
counteract them, as for example changing the rewards pattern for that expert or decomposing the 
quantity of interest. The strategy adopted may depend on the detected bias. In the case that 
motivational biases are so severe that they could damage the quality of the assessment, the expert 
could be discarded, though this is only done in extreme and rare cases. 
 

• Phase 2: Structuring 
 
The purpose of this phase is twofold. On the one hand, the objective is to decompose the quantity 
of interest as a function of several other variables in order to simplify the task of assessing 
distribution functions, on the other hand the objective is to obtain information about the way the 
expert approaches the problem, identifying implicit hypothesis that were unknown to the analyst 
and that could introduce bias into the assessment results. This phase may be divided into three 
steps: 
 

1. To set an accurate definition for the parameter under study: The parameter under study 
must be precisely defined. An important tool to apply is the clairvoyant test. It consists of 
asking whether a clairvoyant would be able to provide the value of the parameter with no 
uncertainty. For example, asking the price of a UO2 pellet in 2020 would not pass this 
test. It would be necessary to set explicitly the enrichment factor, the reactor type, the 
supplier, the currency and its reference year (euros of January 1st 2020), etc. 

2. Study the possibility of decomposing the quantity of interest: Decomposing the quantity 
of interest may help in counteracting the effects of motivational biases. Working on low-
level variables may help in disconnecting an expert’s assessments from his/her personal 
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interests, which are based on high-level variables, or attitudes towards risk and 
uncertainty. The authors think that decomposing the problem helps experts in assessing 
joint probabilities, making assessing a conditional probability instead of the right joint 
probability less likely. 

3. Explicitly set all hypotheses to be used by the expert: The objective is to uncover all 
implicit and explicit hypotheses considered by the expert in his/her assessment. A useful 
method of uncovering implicit hidden hypothesis is to ask him/her what he/she would 
like to insure against. In other words, if he/she were allowed to take insurance on certain 
events that could make his/her estimates wrong, what would be those events? Finally, the 
units to be used in the assessment for the quantity of interest or for any low-level variable 
that comes up in the decomposition process must be clearly stated. Experts should be 
allowed to choose the units they prefer to use. 

 
• Phase 3: Conditioning 

 
The purpose of this phase is to draw out into expert’s immediate consciousness all relevant 
knowledge related to the uncertain quantity. Usually, when dealing with a problem, as was 
mentioned in chapter 4, we have generic (or distributional or base information) and case-specific 
information. It is important to realise both types of information and combine them adequately. 
Usually subjects ignore generic information and base their opinions on case-specific information. 
In order to avoid this situation, the authors propose to ask experts the following question: In your 
opinion, what would be the answer to this question given by another person with no case-specific 
information? The answer provided by experts could be taken as a prior distribution that could be 
combined with the opinion based on only case specific information to get the posterior 
distribution through the use of Bayes’ formula. In this phase experts are also warned about the 
risk of using data with no predictive capability to make predictions based on them. They propose 
to use a method suggested by Tversky and Kahneman (1982) to correct such kind of problems, 
which in fact implies a regression to the mean. These authors propose the following measure of 
predictability 12 −⋅= ρτ , where ρ  is the correlation coefficient (in general a subjective estimate) 
between predictions and outcomes. Then, if the expert provides an estimate Y, when the mean of 
the prediction is Yμ  the estimate should be corrected towards the value )( YY Y μτμ −⋅+ . It must be 
pointed out that this correction can be used only for absolute values of ρ  above 0.5. In any other 
case (weak correlations described by correlations coefficients between –0.5 and 0.5) the suggestion 
of the authors is to use the mean (extreme case of regression to the mean).  
 
In this phase, in order to avoid overconfidence, experts are encouraged to think of scenarios that 
could produce either extremely high or extremely low values of the quantity and think about their 
likelihood. If needed, experts could be invited to do a calibration exercise. 
 
 

• Phase 4: Encoding 
 
This is the phase where the analyst and the expert together build the distribution function. The 
techniques used in this protocol are the quantile and the interval techniques, and the combination 
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of both. Experts are allowed to choose the scale they prefer to make their probabilistic statement 
(probabilities, odds, log-odds, bets, etc.). Indirect techniques such as the probability wheel are 
also accepted. 
 
In order to assess joint bivariate distributions, the method suggested is estimating one marginal 
distribution and then several conditional distributions. In the case of multivariate distributions 
the method suggested is to estimate firstly all the marginal distributions and then to estimate the 
median of one variable conditional on a value (excluding the mean) of another variable. This 
way marginal distributions and measures of correlation are obtained in a simple, though not very 
precise manner.  
 
Consistency of expert’s assessments must be checked from time to time by asking the same or 
similar questions in different ways. Lack of consistency may be also detected by drawing the 
estimates provided by the expert on graph paper. In some cases, the first points lie on one line 
while subsequent points lie on a shifted different one. Usually this means that after a given point 
in the encoding session the expert started taking into account in the assessment some additional 
information. Under these circumstances it could be convenient to repeat the encoding session. 
 

• Phase 5: Verification 
 
The objective of this phase is to check that the expert agrees with the distribution generated 
during the encoding phase. The pdf and the cumulative distribution are plotted. In section 5.1.2.2 
the advantages of plotting both functions were discussed. Reviewing those plots could highlight 
some effect not foreseen by the expert that could warrant some further discussion. The final step 
is to ask the expert if he/she would be willing to bet on his/her estimates. If the expert does not 
feel comfortable with the distributions generated, some phases of the protocol should be 
repeated, at least the encoding phase. 
 

• Phase 6: Aggregation 
 
This and the next phase are the two phases that were added after the dissolution of the Decision 
Analysis Group. The original protocol was designed to elicit judgements from only one expert. 
In many cases it is to gather the judgment from several experts. In that case aggregation would 
be necessary.  
 
Merkhofer (1987) considers that the first step to correctly aggregate opinions is an efficient 
exchange of information that would enhance the convergence of the different opinions. This 
exchange of information should be organised by the analyst based on a variation of the Delphi 
technique or on the nominal group technique (this makes sure the absence of unacceptable 
destructive pressures). Both techniques are described in next chapter. Finally the aggregation 
should be done by mathematical means, preferably using a linear pool (see next chapter), either 
with equal or with unequal weights. In case that some of the experts do not converge to the 
opinion of the rest, those distributions could be left apart, to perform sensitivity analysis.  
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• Phase 7: Discretising 
 
In some cases, usually due to demand from the organisation interested in getting the opinion of 
the experts, it could be convenient to transform the (continuous) distribution obtained into a 
discrete one. This is done by dividing the range of the variable in several intervals, taking a 
representative point in each segment and assigning it the probability of the interval. It is 
convenient to impose some restrictions in this process, as for example preserving the mean and 
the variance. Miller and Rice (1983) propose a Gaussian quadrature that allows preserving 
important variable moments. 
 
As a rule of thumb, the estimated time to dedicate to each expert is between half an hour (quite 
unlikely) and two hours. 
 

5.2.2.- The SNL/NUREG-1150 protocol 
 
The SNL/NUREG-1150 protocol was developed at SNL during the mid-1980’s as a 
collaboration between scientists dedicated to nuclear safety and experts in the field of expert 
judgement. This protocol was planned as a mean to obtain a lot of information for large-scale 
risk studies, as for example PSA for NPPs and PA studies for radioactive HLW repositories. The 
steps of this protocol are the following (USNRC, 1990): 
 

1. Selection of issues 
2. Selection of experts 
3. Training 
4. Presentation of issues 
5. Preparation and discussion of analyses 
6. Elicitation of experts’ opinions 
7. Aggregation of results 
8. Review 
9. Documentation 

 
The different steps are described in detail below. 
 

• Phase 1: Selection of issues 
 
In this phase the objective is to identify all issues in the study that could demand the use of 
expert judgement. The process starts with the development of a first list of issues that could 
potentially be of interest. At this stage of the process, suggestions from any stakeholder, even 
from the public, can be accepted. It is preferable to include too many issues in the preliminary 
list than missing some really important issue. Later on, this original list is screened to keep only 
those issues that are really relevant to the study. Being relevant means that they must meet two 
conditions: being uncertain and having a real impact on the results of the study.  
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Then, each issue must be accurately defined. Usually the starting point for any question to be 
solved is vague. It is necessary to arrive at a complete definition of the parameters whose 
uncertainty we want to characterise. Complete definition of a parameter means the full definition 
of the parameter, the initial conditions to evaluate it and any other implicit hypothesis under the 
initial conditions. The final definition should be extremely clear and accurate, with no ambiguity. 
It should pass the clairvoyant test. 
 
The complete definition of the question includes the way the experts should provide their 
answers. Since in risk analyses, uncertainty is characterised as Bayesian Probabilities, experts 
should provide their assessments of uncertainty through these kind of probability. Experts should 
provide probability distributions, either discrete or continuous. 
 
After the full definition of the question, a list with all relevant sources of information should be 
produced. Potential decompositions of the parameters could be produced. The list of references 
to be considered must show the actual state of knowledge in that area, but independence and 
reliability of the sources should always be kept in mind. 
 

• Phase 2: Selection of experts 
 
Three types of experts are considered in this protocol: Subject experts (experts), generalists and 
normative experts (analysts). In the next paragraphs, a description of the qualities that these 
experts should have and the process followed to choose them are discussed. 
 

1. Generalists: Generalists supervise the whole process and check the quality of all models 
used and analyses performed. Usually they come from the organisation interested in 
obtaining the expert opinions. They should know the details of the study where expert 
judgement estimations will be used, should have good management capabilities and 
should also be good at interacting with people. They are the link between the analysts 
and the experts. 

2. Experts: They should deeply know the issue under study and, if possible, be outstanding 
researchers in that area. The first step in choosing them is to make a list of potential 
experts. In principle any person or organisation could propose names. A public call to 
propose experts could be carried out, not excluding self-nominations. The key criterion 
in choosing an expert is that he/she is a real expert. The selection of an expert is based 
on: the CV, an interview, and to be acknowledged as expert by his/her colleagues. 
Another point to consider is his/her willingness to sign up to his assessments. Another 
point to check is the potential influence of motivational biases. Experts could be asked to 
provide a list of potential motivational biases that could affect them. It is not frequent to 
disqualify an expert for this reason. The number of experts employed per issue, attending 
to some Bayesian arguments (Clemen and Winkler (1985)) about the effect of 
correlation on the combination of opinions, is usually between 3 and 5. Diversity is the 
criterion used to obtain independence. Experts chosen should normally work with 
different information sources, should have a different scientific background (engineers 
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vs. physicists or chemists), should follow different approaches to the problem 
(experimental vs. theoretical) and should have different professional experience. 

3. Analysts: In addition to having a sound knowledge of probability, statistics and 
knowledge psychology, they should also have some experience in the use of the 
protocol. It is also desirable that the analyst has had some contact in the past with 
scientists and engineers; this helps experts to feel comfortable when giving their 
assessments. The selection should be based on the CV and on consultation with 
colleagues.  

 
• Phase 3: Training 

 
The objective of this phase is to inform experts about normative aspects of expert judgement 
elicitation processes. It can be decomposed into the following sub-objectives: 
 

1. Motivate experts to provide rigorous assessments, 
2. Remember basic concepts of Probability and Statistics, 
3. Training in the assessment of Bayesian probabilities, and 
4. Informing experts about basic issues related to knowledge biases. 

 
During the motivation phase the experts must obtain information to point out the importance of 
the work they are going to do. Firstly, the project team explains to the experts the study frame 
where their opinions will be used, stressing the part of the study where their opinions are 
relevant. Secondly, the necessity of expert judgement will be explained, explaining in depth the 
concept of Lack of Knowledge Uncertainty, and how it links to them. Thirdly, the project team 
will say explicitly that the key issue is not to predict a single value of each parameter under 
study, but characterising their uncertainty, allowing others to know the actual state of knowledge 
in that area. 
 
After remembering basic Probability and Statistics concepts, the experts get some training about 
assessing Bayesian probabilities, which includes: accurate definition of questions to be assessed 
(making explicit implicit hypotheses, showing well and badly posed questions), decomposition 
as a way to simplify assessments (use of influence diagrams, event trees and uncertainty 
propagation techniques) and adequate evaluation of different evidences in order to assess 
probabilities (use of Bayes’ theorem and concepts of independence and reliability of information 
sources). 
 
The last part of the training session is dedicated to explain Knowledge biases to the experts in 
order to teach them to provide more reliable opinions, i.e.: representativity, availability and 
anchor and adjustment. Experts should be informed about the hazard of being overconfident. A 
calibration exercise could be appropriate. The whole training session should not take more than 
one morning. 
 

• Phase 4: Presentation of issues 
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This step is done through an interactive session composed of the project team and the experts. 
The issue at hand is to explain to the experts, in a detailed way, the questions to be assessed and 
to make a schedule of the activities to be developed by each expert. All the work developed by 
the project team during the Definition of the Problem phase should be used now. The session 
should start with a presentation given by the generalist about the parameters to be assessed, 
including all relevant sources of information previously identified. Experts should provide their 
own view of the problem and the definition of the parameters, pointing out, if needed, further 
information sources, computations to be made, etc. The result of this session, eventually, would 
be a refined definition of the parameters under study. Common definitions to all the experts 
should be agreed. 
 
The second step in this meeting is to study the possible ways to decompose each parameter. The 
analyst and the generalist should provide a seminal decomposition that should be discussed with 
the experts. The objective is to help the experts to develop their own decompositions. 
Decompositions could be quite different from one expert to another one. Expert will have to 
assess uncertainties of variables at the lowest levels. The analysts will do the appropriate 
aggregation later. This is the point to introduce propagation of uncertainty concepts to the 
experts and to inform them about all the potential variety of tools that the analysts could provide 
them to pre-process and post-process probabilistic runs of computer codes or of the simple 
decomposition models developed by experts. 
 

• Phase 5: Preparation and discussion of analyses 
 
Experts develop their analyses during this phase, according to the schedule agreed in the 
previous step. By the end of this period, each expert will write a report summarising the main 
hypothesis and procedures used during his/her work, the conclusions achieved and, if he/she 
wishes, a preliminary assessment of uncertainties. Whenever needed during this period, the 
project team should be available to each expert in order to provide statistical support or to 
resolve any doubt about the parameters to be assessed. At the end of this period, a meeting is 
organised where experts are encouraged to present their approach to solve the problem. This is a 
wonderful forum for exchanging information and different points of view. Sometimes, after this 
meeting, experts review and change their analyses. 
 

• Phase 6: Elicitation of experts’ opinions 
 
The elicitation of each expert opinion’s is individual and is done in a quiet environment, if 
possible without interruptions. It is convenient to have the presence of an analyst and a 
generalist, in addition to the expert. In a systematic way, the analyst obtains the opinion of the 
expert for each parameter, asking for supporting reasoning whenever necessary. The role of the 
generalist in this session is to provide additional information when needed, to provide general 
support and to audit the session in order to avoid irregularities (bias induction, etc.). Whenever 
needed, the analyst could ask questions in a different way to check potential inconsistencies. The 
session should be recorded (tape recorders, video or extensive hand annotations). This is crucial 
to deliver a good documentation of the expert judgement exercise. 
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The techniques used to help the expert when assessing uncertainties are quite standard: quantile 
assessment for continuous variables and probability estimations for discrete variables (direct or 
indirect methods); in the case of experts with some skills in probability other techniques like 
direct parameter assessment or drawings are acceptable.  
 

• Phase 7: Aggregation of results 
 
Assessments provided by experts are studied in this phase. The objective is to check that there 
are not important biases and the logical correctness of their rationale. If biases and logic faults 
are not present in expert’s assessments, the next step is to check if individual opinions may be 
aggregated to obtain a unique distribution for each parameter.  
 
Before aggregating individual distributions one condition should be checked. It is related to the 
overlap between distributions of different experts. If the distributions do not overlap, it means 
essentially that the experts disagree. In that case aggregation should be avoided. Under these 
circumstances a reconciliation session could help. An analyst should lead the session and should 
organise it according to the following steps: 
 

1. Exposition of different opinions. 
2. Identification of differences. 
3. Discussion about the reasons for each original assessment. 
4. Discussion about the different sources of information used. 
5. Re-elaboration of individual opinions in posterior elicitation sessions or joint 

assessment (through consensus) of a common distribution, if agreed by experts. 
 
In the case that a consensus distribution is obtained, that is the final step (before documentation). 
If further elicitation sessions are needed, the consistency of the opinions is checked again and 
aggregation is done via linear pool with equal weights. 
 

• Phase 8: Review 
 
The written analysis of each issue developed by the analyst and the generalist is returned to the 
experts for review. This review is aimed at avoiding any potential misunderstanding, making sure 
that the experts’ rationale has been correctly summarised by the analyst and the generalist, and 
actually reflects the experts’ opinion.  
 

• Phase 9: Documentation 
 
Documentation of the application must be as complete as possible, including results and 
description of the methods used to obtain them. The contents of the documentation should follow 
the order of application of the procedure, recording, in each step, what has been done, why it has 
been done, how it has been done and who has done it. In order to achieve this degree of 
documentation, a schedule of standardised documentation activities should be made for each 
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phase. It should always be completely clear to the reader what is a result assessed by an expert and 
what results are the outcomes of an aggregation, sensitivity analysis or any other analysis not 
provided explicitly by an expert. 
 

5.2.3.- JRC’s KEEJAM protocol 
 
This protocol was developed by the Joint research Centre (JRC) of the European Commission 
(EC) in collaboration with the University of Bolonia. The Knowledge Engineering methodology 
for Expert Judgement Acquisition and Modelling (KEEJAM) is based on the theory of 
Knowledge Engineering; see Cojazzi et al. (1997) and Cojazzi and Fogli (2000). This protocol is 
completely different from any of the protocols previously described and from those described in 
next chapter. 
 
According to the authors of this protocol, the problem of expert judgement is just a knowledge 
problem; only an in depth study of the knowledge available to the experts about the problem 
under study may help solving it. So, the stress must not be put on experts’ opinions but on the 
data, hypotheses and general knowledge sources used by experts. 
 
Analysts must analyse all the knowledge provided by experts to build a self-consistent model. 
This model should be the best representative of the state of knowledge about the problem under 
study. It should also be of help to find out the origin of the discrepancies between the experts and 
problems in the formation of judgements such as lack of accuracy and vagueness, even problems 
related to the characterisation of uncertainty. The authors admit the possibility of using 
formalisms different from the theory of probability to address problems, such as the theory of 
fuzzy sets. The proposed protocol consists of five phases that may be further decomposed in 
tasks (Cojazzi et al. (1997)): 
 

• Phase 1: Start 
 
The problem is analysed in a preliminary way, trying to find out if the problem may be solved 
with this methodology. The requirements of the model to be developed are defined. The 
objective is to tailor the methodology to the problem at hand, design the project team and plan 
the application. 
 

• Phase 2: Design 
 
This phase is aimed at defining appropriate techniques for the representation of the types of 
knowledge and reasoning strategies relevant to the application domain of interest, also including 
the treatment of the imperfections that may affect knowledge and reasoning. 
 

• Phase 3: Knowledge acquisition and modelling 
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This phase is devoted to acquiring knowledge from the identified knowledge sources (experts, 
scientific papers and real-world context) and at developing a domain conceptual model that 
meets the stated requirements. 
 

• Phase 4: Exploitation and refinement 
 
This phase is dedicated to exploit the conceptual model developed for carrying out the set of 
expert judgement tasks. 
 

• Phase 5: Synthesis and release 
 
All the results obtained are collected and suitable documentation about the work done is 
produced. 
 
Probably the major shortcoming of this protocol is the huge effort in terms of work, budget and 
time that must be devoted to implement it in order to solve complex problems, see Cojazzi and 
Fogli (2000).  
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6.- Combination of expert judgement  
 
The objective when developing an expert judgement exercise is to obtain the opinion of the most 
relevant experts about each parameter or event of interest. Empirical evidence shows that, in 
general, the aggregated opinion of several experts is better than the individual opinions, though 
usually some outstanding experts perform better than the group. Because those outstanding 
experts are sometimes not easily identified and other times they are not available, the common 
procedure is to count on several experts and to obtain their aggregated opinion. 
 
There are two general types of methods to obtain the aggregated opinion of a group of experts: 
group methods and mathematical methods. Group methods allow the interaction among experts 
to arrive at a consensus opinion, while mathematical methods consist of different mathematical 
techniques to combine individual opinions and produce a joint opinion consistent with the 
individual ones. Among the group methods, the most used and the best-known are the total 
interaction group method, the nominal group method and the Delphi method. Mathematical 
methods may be classified in two groups: pools (linear and log-linear) and Bayesian methods. 
No consensus exists about which methods produce better results. Each method shows advantages 
and drawbacks. Depending on the type of task and the objectives of the exercise, some methods 
could be more appropriate than others. 
 

6.1.- General characteristics of expert judgement combination 
 
Before getting into the technical details of the different methods to aggregate the opinions of 
different experts, it seems convenient to consider some aspects related to the possible causes of 
discrepancies between experts and the aggregation method to be used. 
 
As a general rule, whenever discrepancies between experts occur, it is convenient to study them 
in order to identify their origin and possible consequences. In fact, discrepancies become 
important sources of information. According to Roberds (1992) the origin of different individual 
assessments may be classified as 
 

1. Disagreement on the assumptions or definitions that underlie assessments. 
2. Failure to overcome assessment errors and biases. 
3. Judgements based on different information sources. 
4. Disagreements on how to interpret available information. 
5. Different opinions or beliefs about the quantity of interest. 

 
The analyst must take into account these ideas carefully in order to detect the existence of non-
admissible differences, meeting the experts again if needed to check some of their opinions. As 
an example, contacting an expert again could be justified if the analyst considers that that expert 
did not take into account some relevant piece of information. Identifying some lack of accuracy 
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in the formulation of the questions to be assessed demands a new and accurate formulation and 
the corresponding re-assessment by the experts. 
 
If, eventually, the differences among experts are admissible, then it is convenient to check how 
those legitimate differences may affect the results of the study where expert opinions are going 
to be used: a sensitivity analysis would be necessary. If this analysis shows that the differences 
among the opinions of different experts does not produce a big difference in the results, then the 
aggregation of the different opinions is justified and this aggregation does not produce any 
significant loss of information. But, if the differences do actually have a high impact on the 
results of the study, considerable care should be taken. Two main options are available. The first 
one is to aggregate only the opinions that overlap substantially, keeping the outliers for 
performing sensitivity analysis. The second one, acceptable when disagreements are very large, 
consists of not performing any aggregation, accepting that the problem is very much affected by 
uncertainty. 
 
When disagreements do exist, there are three possible results of the attempt to obtain one single 
group opinion: 
 

1. Convergence. The different opinions of the experts evolve, through information sharing 
and discussion, towards a unique opinion that represents the final group opinion, and all 
the members of the group accept that opinion. 

2. Consensus. The group arrives at a unique opinion that does not represent the view of all 
the members. The consensus may be forced (not all experts accept the final group 
opinion) or reached by agreement (all experts accept the final group opinion; some of 
them accept not to include some of their opinions).  

3. Disagreement. Huge differences in their opinions avoid any kind of consensus.  
 
Convergence is the most defensible situation when the common opinion is subject to great 
scrutiny, as in a regulatory review or in a peer review process, though it is usually the most 
difficult to achieve. Consensus by agreement is a little less defensible and is also difficult to 
obtain. Forced consensus is relatively easy to achieve but it is hardly defensible. 
 
Group interaction allows experts share information, discuss and combine opinions. Sharing 
information and inferential processes is a good strategy to reconcile differences. Aggregation by 
interaction may be a very effective process when different assumptions are the origin of the 
disagreement. In these cases, discussion helps to uncover such different hypotheses and reach 
either convergence or consensus. The most important threat to group interaction is the existence 
of destructive interpersonal relations among experts. Another shortcoming of this procedure to 
reconcile differences is the large organisational effort that these meetings involve, not to speak 
about the problems related to the project budget. Morgan and Henrion (1990) think that this type 
of method is of little use in the scientific and technological fields for most experts are aware of 
their colleague’s opinions (scientific papers, interaction in conferences and joint past projects, 
etc.), and the room for changing opinions is small. 
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Mathematical aggregation methods show some advantages: it is relatively easy to use if the 
analysts have the required mathematical background, it is relatively easy to perform uncertainty 
and sensitivity analysis and destructive interpersonal relations among experts are avoided. These 
methods are very much recommended when disagreements are not large and cannot converge 
further. The main drawbacks are: consensus achieved by means of these methods is certainly 
forced and, in many cases they involve the use of subjective judgements made by analysts to 
assign (different) weights to the experts. 
 
Empirical evidence does not provide a definitive support to either type of methods. Both 
strategies show advantages and drawbacks. In fact, the advantages shown by one type of 
methods are at the same time the drawbacks of the other type and vice versa: mathematical 
aggregation avoids destructive interpersonal relations among experts but, at the same time, it 
precludes sharing information and knowledge, what certainly is undesirable in a process where 
obtaining information and knowledge is key to obtaining the right opinions. So, the use of one of 
either type of methods depends very much on the problem at hand, the magnitude of the 
discrepancies and their origin. Moreover, group methods may work to address any type of 
uncertainty, while mathematical methods are only suited for combining opinions about events 
and parameters. Another option is using both types of methods together. In this case, group 
interaction can be used to guarantee an efficient share of information, hypotheses and rationale, 
but the final aggregation of individual opinions may remain mathematical. 
 

6.2.- Group combination 
 
The formation and modification of group opinions have been deeply studied by Social 
Psychology. Researchers in this area of science have established that, on average, the quality of 
group opinions is higher than the mean opinion of individuals. Nevertheless, regarding the most 
complex tasks, the group does not usually perform as well as the most accurate individual in the 
group. Moreover, two phenomena that appear in groups may introduce important biases in their 
common opinions: dysfunctions and preference shift. The most important dysfunctions that may 
appear in a group are the following: 
 

1. An effect of central tendency that takes the group to follow a limited set of lines of 
thinking. 

2. An effect of auto-weight. Each member of the group participates in the group debate and 
tries to influence on the group opinion proportionally to his/her opinion about his/her own 
competence in the field. 

3. An effect of hidden agenda, that makes some experts not give their real opinions openly 
to the rest of the group. 

4. Group pressure on some members to reach a consensus. 
5. Influence of the strongest personalities. 

 
The preference shift consists in a change in the opinion of subjects produced by psychological 
factors not related to the task under study. There is some empirical evidence that in some group 
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discussions experts shift their original opinions towards other opinions that involve a higher risk. 
This phenomenon is due to the fact that group discussion usually reduces the level of anxiety of 
individuals about the possible adverse consequences because the responsibility is considered to 
be shared by all the group members. 
 
The identification of these problems of group behaviour has provided some guidance to design 
methods to obtain group opinions. The aim is to enhance the exchange of information, rationale 
and opinions, avoiding as much as possible at the same time the introduction of group biases. 
Three methods have been selected for discussion in this chapter: the total interaction group, 
which allows open and unrestricted discussions among experts, the Delphi method, which allows 
interaction among experts via exchange of written opinions, without direct interaction, and the 
nominal group method, which allows direct interaction among experts moderated by an analyst. 
 

6.2.1.- Total interaction group 
 
The aim of this method is to reach a group opinion about an issue, either via convergence or via 
consensus and accepting non-restricted interaction among experts. The main drawback of this 
method is the possible concurrence of group biases. Other problems that can also arise in an 
application of this method, for example a poor quantification of the uncertainty or the existence 
of unknown implicit assumptions, may be a result of the degree of formality of the method (more 
formal applications producing better quality results in general). If, before the discussions, the 
problem has not been clearly and accurately defined, or if experts have not provided a first 
individual opinion to be used as a starting point for discussion, the quantification of uncertainty 
can be poor. 
 
Some authors think that this technique may be of interest to deal with uncertainty problems in a 
qualitative manner, where oral communication may be very important to exchange information. 
 

6.2.2.- The Delphi method 
 
The Delphi method was developed in the late 1940s and early 1950s by the Rand Corporation for 
the USA army as a tool to improve the quality of the decisions made via consensus in the 
military area. In the middle of 1960s and early 1970s it found a wide variety of applications 
(Dalkey (1968) and Brown et al. (1969)). Its use has clearly decayed since the 1980s onwards. 
The method was mainly applied to technology forecasting, but also to different types of policy 
analyses. 
 
The method has three main features: 1) anonymous response, 2) iteration and controlled 
feedback and 3) statistical group response. The method may be structured in the following steps: 
 

1. A questionnaire is developed and sent to the experts previously selected. 
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2. Each expert gives his/her answers to the questions in an independent and anonymous 
way. 

3. The responses of each expert are analysed by the monitoring team. The lower 25% and 
the upper 25 % of responses are excluded. 

4. The set of remaining responses is then sent back to experts and they are asked if they 
wish to revise the initial predictions. 

5. The process is iterated until experts reach a certain consensus. 
 
The Delphi method has undergone many variations. One of the most important was letting the 
experts indicate their own expertise for each question (for example rating their expertise on a 
scale of 1 to 7). This variation was supposed to improve accuracy, since only opinions of experts 
with “higher” expertise were used to determine the distribution of opinions for that item. This 
approach was challenged when it was found that self-rating of participants did not coincide with 
“objective expertise”. Moreover, it has been found that women consistently rate themselves 
lower than men.  
 

6.2.3.- The nominal group method 
 
This method profits from the advantages of the face-to-face discussion, trying simultaneously to 
avoid group biases. This is achieved by means of an analyst that moderates the group 
discussions. The controlled face-to-face interaction is more dynamic and avoids experts tiring 
because of having to provide written arguments in support of their opinions, as can happen when 
applying the Delphi method. Each expert always provides an individual first assessment before 
the discussion meeting. Those assessments are the starting point for the discussion. Roberds 
(1992) describes this formal process as a six-step method: 
 

1. Motivation 
2. Identification of differences 
3. Discussion about the reasons for each initial assessment 
4. Discussion about the information sources used 
5. Re-elaboration of individual assessments 
6. Reconciliation of differences 

 
The role of the analyst is, in addition to avoiding group biases, to interact with experts in order to 
reach consensus about definitions, hypotheses, information sources used, data interpretation, etc. 
In case a consensus is not achieved, mathematical aggregation is kept as an option. 
 

6.2.4.- The protocol used by Nirex and the NDA in the UK 
 
In the mid 1980’s the UK Department of Environment studied an expert judgement group 
consensus methodology. The study was successful and it showed that it was feasible to apply it 
to obtain relevant information from a group of experts. Based on the experience acquired, the 
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UK DoE used that methodology to elicit several pdf’s within the European project PACOMA 
(Dalrymple and Phillips (1987)). This work was much criticised in a peer review process 
(Zimmerman et al. (1991)), especially because it used a group consensus methodology instead of 
eliciting individual distributions and combining them via a mathematical method. Nevertheless, 
UK DoE rejected this criticism on the grounds of defensibility of the consensus distributions. 
Since consensus was not forced, each expert would be willing to defend the common 
distribution. UK DoE believed that the mathematical combination is not as defensible because it 
involves elements beyond the pure expert opinions. 
 
Nirex adopted and slightly modified this method and applied it for the first time in 1991 and 
1992 (Phillips and Wisbey (1993)). In 2007, Nirex was incorporated into the Nuclear 
Decommissioning Authority in the UK.  This method remains NDA’s method of choice for the 
elicitation of uncertainties for key safety significant parameters in a PA.  The method consists of 
the following phases (Nirex (2006)): 
 

1. Establishing roles 
 
Four different roles are defined for the elicitation session 
 

• Customer: he/she is a representative of the organisation interested in obtaining the 
pdf’s. That person knows and brings an understanding on how the parameters of 
interest will be used in the PA. He/she actively participates in the accurate definition 
of the parameters to be studied and also participates in all meetings to answer any 
question that could arise about the parameters, but should never influence the 
elicitation. 

• Facilitator/analyst: his/her role is to guide the elicitation sessions ensuring that all 
views are considered and group biases are avoided.  

• Experts: these persons are those that actually solve the problem. The requirements 
imposed on them are the same as in all other formal methods. 

• Observers: their presence is not mandatory. They can contribute to the general 
discussion but they don’t provide any opinion. 

 
2. Determining the scope of the project 

 
The customer, together with the facilitator, discusses the importance and role of the parameters 
in the PA model. They have to make sure that the definitions of the parameters are understood 
and agreed. The customer may also define the degree of detail needed in the pdf’s to be assessed: 
the need of only upper and lower limits, the use of specific distribution (normal, triangular, etc.) 
or the imposition of no restriction on the shape of the distribution, allowing the experts to fully 
determine it. 
 

3. Preparation of the meeting 
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The customer and the facilitator decide about the number and identity of the experts that will 
participate, possibly in consultation with experts known to the customer. They also decide 
whether observers will or will not be invited. The customer prepares a data pack to define the 
extent of the search for appropriate data. The data pack is distributed to the facilitator and to the 
experts at least two weeks in advance of the elicitation session. 
 

4. Meeting protocol  
 
The protocol used to perform the elicitation session is the SRI protocol, see chapter 4 in this 
document. The only innovation with respect to the SRI protocol is the inclusion of the customer 
as a person that provides information at demand of the experts and that resolves any doubt about 
the definition of the elicited parameters. 
 

5. Reporting the results of the meeting 
 
During and after the meeting the customer and the facilitator prepare a report containing the 
results of the elicitation session and the rationale that supports such results.  
 

6. Review of elicited distributions 
 
The elicitation report, prior to its final publication, is distributed for peer review to experts that 
have not participated in the elicitation. The review comments cannot alter the results of the 
elicitation but under exceptional circumstances, as for example omission of relevant sources of 
information, can lead to a re-elicitation. After this peer review the elicitation report is finally 
published.  
 
As a final remark about group methods, no conclusive experimental results are available, but the 
expected benefits of avoiding important group biases make the Delphi method, the nominal 
group method and other methods like the method used by Nirex and NDA more attractive to 
analysts. 
 

6.3.- Mathematical aggregation 
 
As was mentioned at the beginning of this chapter, there are two general methods to address the 
problem of aggregating mathematically the opinions of different experts: pools (linear and log-
linear) and Bayesian methods. In both cases a person or group of person acts as a Decision-
Maker (DM), who has his/her/its own opinions about the issues under study and about the quality 
of the experts. In the linear (log-linear) pool the DM has to attribute to the distribution provided 
by each expert, a relative importance according to how much credibility the DM thinks each 
expert and the information he/she uses, deserves. When applying Bayesian methods, the DM has 
his/her own (a priori) opinion about the issue and updates it by means of Bayes formula, using 
the experts’ opinions as empirical evidence. Linear pools are more easily applicable, but no 
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attempt has been made to incorporate the effect of possible dependence between experts on the 
assessment of their relative weights, while Bayesian methods are able to deal with this problem. 
 

6.3.1.- The linear pool 
 
Suppose m experts have provided their respective distributions for a given uncertain parameter, 
θ, expert j provides distribution )(θjf  and so on; suppose each expert is assigned a weight ωj 
Contained in the interval [0,1], subject to the restriction 
 

1
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is the linear pool of the individual distributions. Under the same conditions, the log-linear pool is 
defined as 
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The only problem to apply the linear pool and the log-linear pool is the determination of the set 
of weights. It is convenient to keep in mind that the weight assigned to each expert could vary 
from one parameter to the next one. Three methods are available in the literature to assess 
weights to experts: equal weights, Saaty’s method and Cooke’s classical method. 
 
6.3.1.1.- Equal weights 
 
This is the case when we have n experts and a weight 1/n is assigned to each expert. Equal 
weights is a defensible strategy when there is no reason to think that any expert performs better 
than any other one, but it is not so defensible when differences in the quality of experts are 
evident, neither when strong dependences among experts are detected (dependent information is 
less valuable than independent information from an inferential point of view). This is a widely 
used strategy. 
 
6.3.1.2.- Saaty’s method 
 
Saaty (1988) developed the Analytical Hierarchy Process (AHP) as a support tool to be used in 
the framework of multi-attribute decision analysis to establish a hierarchy and sort attributes 
according to the DM’s opinions and preferences. AHP is easily adaptable to the task of assigning 
weights to the opinions of different experts. 
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Saaty’s method arises from the explicit acknowledgement that human beings as DM’s have 
many difficulties to simultaneously compare many factors (experts). Nevertheless, human beings 
are efficient at comparing two possible alternatives, as for example when they are asked to rank 
them by means of using expressions such as better, worse or equal. Following this method, 
experts are assigned weights according to the subjective quality that the DM attributes to each 
expert. The main advantage of this technique is that it is easy to learn and to apply. 
 
Consider a DM that has obtained the opinion of n experts about a given issue. Then, he/she is 
asked which expert is best, j or k. In total, he/she will have to answer this question n(n-1)/2 
times, the number of pairs of experts that we make take out of n individual experts. Three real 
values a>1, 1 and 1/a. are associated respectively to the adjectives better, equal and worse. Saaty 
recommends to take a=e when the choices are the above mentioned better-equal-worse. The 
values obtained from the n(n-1)/2 comparisons are used to fill in a n × n square matrix A whose 
element ajk  is the value assigned to the relation between experts j and k. The diagonal elements 
are all equal to 1. Such a matrix for 4 experts could be as follows: 
 

 
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

172.272.237.0
37.01137.0
37.01137.0
72.272.272.21

                                                      (6.4) 

 
which represents the case when expert 1 is the best, experts 2 and 3 are equally good and worse 
than expert 4. In order to get the weights for the different experts Saaty proceeds in the following 
way: 1) compute the eigen values of matrix A and the eigenvector, ),...,( 1 n

T ΩΩ=Ω , associated to 
the largest eigen value, maxλ , of matrix A (remember that Ω=Ω maxA λ ). The weight associated to 
each expert is the ration between each component of that eigenvector and the addition of all its 
components ( ∑ =

ΩΩ=
n

j jii 1
ω ). In the example represented by matrix (6.4), the corresponding 

weights obtained for experts 1, 2, 3 and 4 are respectively 0.46, 0.13, 0.13 and 0.28.  
 
When the number of experts is small it is easy to check whether the DM has made any consistency 
mistake in the paired comparisons (lack of transitivity of preferences). When the number of experts 
is large, checking coherence by inspection of matrix A may be cumbersome. For those cases the 
author developed a consistency index that allows detecting lack of consistency in the preferences 
of the DM, see Saaty (1988). 
 
6.3.1.3.- Cooke’s classical method 
 
This method was designed to avoid arbitrariness in the assignation of weights to experts obtained 
via purely subjective opinions of the DM. Cooke proposes to base the assignation of weights on 
the precision of the expert. According to Cooke (1991), an expert is precise if he/she is well 
calibrated and his/her opinions are informative. As it was mentioned in chapter 4, an expert is 
well calibrated when his/her assessed probabilities agree with actual observed frequencies. The 
informative character of a pdf is related to its dispersion, the less disperse it is, the more 
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informative.  The more disperse a distribution is, the less it may be used with predictive 
purposes. So, an expert is good, and his opinions deserve being highly weighted, when they are 
calibrated and are informative. Cooke (1991) has developed a scoring rule that measures 
simultaneously both properties (calibration and informativeness). The main problem with 
Cooke’s method is the design of the right set of parameters, called seed variables, used to assign 
weights. These parameters must be in the domain of expertise of the experts that participate in 
the expert judgement exercise and their actual values must be known to the analysts and 
unknown to the experts. See Cooke (1991) for more details. 
 

6.3.2.- Bayesian combination of expert judgement 
 
When a DM adopts a fully Bayesian approach, Bayes’ formula is an adequate tool to combine 
experts’ opinions in order to update his/her own state of knowledge about the issue under study, 
Let θ be the parameter whose uncertainty the DM wants to characterise. The a priori state of 
knowledge of the DM about that parameter is represented by P(θ|H), the prior distribution of the 
DM for parameter θ conditional on all his/her knowledge, H. Experts’ opinions is equivalent to 
new information H’ given as a multivariate distribution that indicates what values of θ experts 
consider more likely. The DM will combine both pieces of information by means of Bayes’ 
formula 
 

)/(),/'()',/( HPHHPHHP θθθ ⋅∝   ,                                                     (6.5) 
 
where the left hand side is the a posteriori DM’s distribution for θ after collecting experts’ 
opinions and the first factor on the right hand side is the likelihood of experts’ opinions in the 
opinion of the DM. The likelihood is a key element in Bayes’ formula used by the DM to model 
the expert. Lindley (1988) is one of the best available papers about Bayesian combination of 
experts’ opinions. 
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 7.- Conclusions 
 
Expert judgement is a technical discipline, between science and art, which started its 
development shortly after the end of World War II. Since then a lot of research has been done 
about the way people make judgements, the problems they may encounter and the way to 
counteract them. After the pioneering Delphi method, several other protocols have been 
developed to make sure that subjects’ opinions are obtained as free of biases as possible. The 
need to incorporate explicitly uncertainties in risk analyses of complex industrial facilities, and 
specifically the need to do this for the PSA of NPPs and for the PA of radioactive HLW 
repositories, triggered the development of specific protocols in the nuclear field, such as the 
protocols SNL/NUREG-1150, KEEJAAM and the protocol used by Nirex and the NDA in the 
UK. In this report the authors have provided an overview of all issues related to expert 
judgement and protocols to obtain expert judgement in a formal and structured way. This report 
is expected to be used as training material for experts that are going to participate in formal 
processes to get their opinions about technical and scientific matters. 
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