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Foreword

The work presented in this report was developed within the Integrated Project PAMINA:
Performance Assessment Methodologies IN Application to Guide the Development of the
Safety Case. This project is part of the Sixth Framework Programme of the European
Commission. It brings together 25 organisations from ten European countries and one EC
Joint Research Centre in order to improve and harmonise methodologies and tools for
demonstrating the safety of deep geological disposal of long-lived radioactive waste for
different waste types, repository designs and geological environments. The results will be of
interest to national waste management organisations, regulators and lay stakeholders.

The work is organised in four Research and Technology Development Components (RTDCs)
and one additional component dealing with knowledge management and dissemination of
knowledge:

- In RTDC 1 the aim is to evaluate the state of the art of methodologies and approaches
needed for assessing the safety of deep geological disposal, on the basis of
comprehensive review of international practice. This work includes the identification of
any deficiencies in methods and tools.

- In RTDC 2 the aim is to establish a framework and methodology for the treatment of
uncertainty during PA and safety case development. Guidance on, and examples of,
good practice will be provided on the communication and treatment of different types of
uncertainty, spatial variability, the development of probabilistic safety assessment tools,
and techniques for sensitivity and uncertainty analysis.

- In RTDC 3 the aim is to develop methodologies and tools for integrated PA for various
geological disposal concepts. This work includes the development of PA scenarios, of
the PA approach to gas migration processes, of the PA approach to radionuclide
source term modelling, and of safety and performance indicators.

- In RTDC 4 the aim is to conduct several benchmark exercises on specific processes, in
which quantitative comparisons are made between approaches that rely on simplifying
assumptions and models, and those that rely on complex models that take into account
a more complete process conceptualization in space and time.

The work presented in this report was performed in the scope of RTDC 2.

All PAMINA reports can be downloaded from http://www.ip-pamina.eu.

PAMINA Sixth Framework programme
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ABSTRACT:

This report constitutes deliverable CEA/DEN/DER for the component RTDC 2 of
European project PAMINA (Performance Assessment Methodologies in Application to
Guide the Development of the Safety Case) 6th PCRD. This task concerns the treatment
of the spatial variability of the geological media in the uncertainty and sensitivity analyses
of computer codes used for the safety analyses of the deep waste storage facilities. In this
report, one restricts to methodological aspects. We describe various techniques to perform
global sensitivity analyses of numerical models with spatially variable input parameters.
We are specially interested by the models which depend on geostatistical simulations,
such as a heterogeneous field of permeability modelled by a random field. This problem is
also seen within a more general mathematical framework : analysis of numerical models

with functional inputs (random fields, stochastic processes, random sets, ...).
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RESUME : Ce rapport constitue le livrable du CEA/DEN/DER pour le composant RTDC 2 du projet
européen PAMINA (Performance Assessment Methodologies IN Application to guide the
development of the safety case) du 6™ PCRD. Cette tdche concerne le traitement de la
variabilité spatiale des milieux géologiques dans les analyses d’incertitudes et de sensibilité de
codes de calcul utilisés pour les analyses de s(reté des installations de stockage profond.
Dans ce rapport, on décrit uniquement les aspects méthodologiques, dont notamment
différentes techniques pour effectuer des analyses de sensibilité globales sur des modeéles
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probleme est également vu dans un cadre mathématique plus général, celui des modeéles
numériques dépendant d’entrées fonctionnelles (qui peuvent étre des champs aléatoires, mais
aussi des processus stochastiques, des ensembles aléatoires, ...).

ABSTRACT : This report consists in deliverable CEA/DEN/DER for the component RTDC 2 of European
project PAMINA (Performance Assessment Methodologies IN Application to guide the
development of the safety case) 6th PCRD. This task concerns the treatment of the spatial
variability of the geological media in the uncertainty and sensitivity analyses of computer
codes used for the safety analyses of the deep waste storage facilities. In this report, one
restricts to methodological aspects. We describe various techniques to perform global
sensitivity analyses of numerical models with spatially variable input parameters. We are
especially interested by the models which depend on geostatistical simulations, such as a
heterogeneous field of permeability modelled by a random field. This problem is also seen
within @ more general mathematical framework : analysis of numerical models with functional
inputs (random fields, stochastic processes, random sets, ...).

KEYWORDS : UNCERTAINTY, SENSITIVITY, METAMODEL, JOINT MODEL, FUNCTIONAL DATA,
GEOSTATISTICAL SIMULATION, HYDROGEOLOGY, IMPACT CALCULATION

MOTS CLES : INCERTITUDE, SENSIBILITE, MODELE JOINT, DONNEES FONCTIONNELLES,
SIMULATION GEOSTATISTIQUE, HYDROGEOLOGIE, CALCUL D'IMPACT

(04/02 - JA-Document1)

R/édacteur Vérificateur Vérificateur Qualité Approbateur
Fonction . ) IQ du SESI Le Chefdu S
- //? =
visa //,A == g\l/\g_ ;
NOM Bertrand I00SS Florence JOYER Frédéric BERTRAND
Date 10/03/08 10/03/08 A3 /o | 2 | 11/03/ o)
| § , -
Propriété Industrielle Cadre de réalisation Classification Qualité
En I'absence d'accord ou de contrat, la diffusion | DOB............cccceeveeviieeenneenn, DSOE |DR|CC|CD|SD| Ss Document réalisé
des informations contenues dans ce document | Domaine .....oooovvvvveinn.. Simulation o
aupreés d'un organisme tiers exterieur au CEA Brojelwammmmmmrvmmannesss SUPAR Salls MG cerfc
est soumise a I'accord du Chef de Département. | ~ 4ot X AFAQ — ISO 9001




NT

CEA/DEN/CAD/DER/SESI/LCFR/NT DO 4 06/03/08

0

2/50

NATURE

CHRONO UNITE

INDICE

PAGE

Indice

OBJET DES REVISIONS DATE

REFERENCE GCAOQ

Emission initiale

11/03/08 CEA/DEN/CAD/DER/SESI/LCFR/NT DO 4 06/03/08




NT CEA/DEN/CAD/DER/SESI/LCFR/NT DO 4 06/03/08 0 3/50

NATURE CHRONO UNITE INDICE PAGE

1. INTRODUCTION

This report consists in deliverable CEA/DEN/DER for the component RTDC 2 of European project
PAMINA (Performance Assessment Methodologies IN Application to guide the development of the
safety case) 6th PCRD. This task concerns the treatment of the spatial variability of the geological
media in the uncertainty and sensitivity analyses of computer codes used for the safety analyses of
the deep waste storage facilities. In this report, one restricts to methodological aspects.

The chapter 2 describes various techniques to perform global sensitivity analyses of numerical
models with spatially variable input parameters. We are specially interested by the models which
depend on geostatistical simulations, such as a heterogeneous field of permeability modelled by a
random field. The application (called MARTHE) concerns the modelling of the radionuclide
migration of a radioactive waste disposal site.

Chapters 3 and 4 deal with a more general mathematical framework : the uncertainty and sensitivity
analyses of numerical models with functional inputs (as for example random fields, stochastic
processes and random sets). We explain a new methodology, based on metamodel (i.e. response
surface) construction, to deal with CPU time expensive computer code, containing functional inputs.
In chapter 3, we apply it on the MARTHE application (a spatial random field input), while in chapter
4, we apply it on another computer model which contains a temporal stochastic process in its input
variables.
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2. SENSITIVITY ANALYSIS OF A HYDROGEOLOGICAL MODEL
DEPENDENT ON GEOSTATISTICAL SIMULATIONS OF THE
PERMEABILITY FIELD

21 ABSTRACT

This research focused on developing a transport model for *°Sr in a saturated porous medium
for an interim radwaste storage site in Moscow (Russia). A previous global sensitivity analysis of the
model led to the conclusion that the calculated concentrations for the piezometers were mainly
influenced by a) the distribution coefficient of **Sr in the different layers of the domain and b) the
intensity of infiliration in the pipe leakage zones, and not by the hydrodynamic parameters
(dispersivity, porosity, etc.)

The effect of the shape of the coarse sandy layer is investigated in this new study. A technique
based on geostatistical simulation is being developed to simulate the shape of this layer. Standard
techniques can no longer be used to deal with the sensitivity analysis of such a model, i.e. with
random input fields. Different qualitative and quantitative analytical methods are proposed. These
methods make it possible to quantify the effect of poorly understanding the shape of the coarse
sand layer. The sensitivity analysis also makes it possible to detect other influential parameters for
this new modelling technique. The precision on these influential parameters or on the shape of the
layer can therefore be improved, thereby considerably decreasing the uncertainty on model
prediction.

2.2 INTRODUCTION

This study follows on from the internship by E. Volkova carried out within the collaborative
agreement between the Kurchatov Institute (Moscow, Russia) and the French Atomic Energy
Commission (France). This aim of this internship was to develop a transport model for water-
saturated porous media using the MARTHE software (BRGM") for an interim radwaste storage site
(STDR) in Moscow (Russia). The main objective was to model the transport of strontium-90, a
mobile radioactive element found in soils — in the upper aquifer of the site. To begin with, modelling
was performed during a pre-established measurement period (2002 — 2004) in order to compare
the model results with the in-field measurements. For predictive purposes, modelling was then
continued up to 2010 to determine the degree of potential contamination in the aquifer. In order to
identify the code input parameters considered to have the most effect on the calculation result,
statistical methods for uncertainty and sensitivity analyses were used (Law & Kelton [10], Helton et
al. [6], Devictor & Bolado [4], looss [7]). Considering the complexity of the numerical model and the
long CPU time, an intermediary phase was required to build the metamodels for a limited number
of code simulations (Volkova et al. [14]). Additional research was also carried out to improve the
metamodel building phase (Marrel ef al. [11]).

This first study made it possible to reach the conclusion that the concentration in the piezometers,
as modelled by MARTHE, was more influenced by the distribution coefficient of **Sr in the different
layers of the domain and by the intensity of infiltration in the pipe leakage zones, than by the other
model parameters. Therefore, the improved precision of these parameters would make it possible
to considerably decrease uncertainty on the model prediction. Owing to this result, one of the lines
of research suggested by this work consists in quantifying the influence of the shapes of certain
less-permeable zones of the model. During the first study, these shapes (resulting from
interpolation methods based on in-field data) were assumed to be unchanging. In the second study,
we suggested varying them using geostatistical simulations.

' French public organisation specialised in geosciences
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Research therefore aimed to study the effect of geostatistical simulations on variations in the output
concentrations calculated by the MARTHE model. Input geostatistical simulations of numerical
models were only briefly discussed in the sensitivity analyses, whether this be on a theoretical,
methodological or practical level. The different solutions discussed in the literature are examined in
looss & Ribatet [8] (see chapter 4) who came to the conclusion that these solutions cannot be
applied when the model is non-linear, requires long CPU times, and has many uncertain input
parameters and output variables. Furthermore, the solution recommended by looss et al. [9] (see
chapter 3) based on a double metamodel has proven to be difficult to apply to this application.
This is due to the input dimensions, the inconsistency in concentration values (some are very
low while others are extremely high), and most probably the very strong influence of
geostatistical simulations in relation to other scalar input parameters. Other approaches have to
be considered, as the functional decomposition of the random field (Busby et al. [0]).

It was possible to foresee simpler methods in the second study owing to feedback from the first
study. The only difference between the two models lies in the replacement of four random input
parameters (permeability in different zones) by the simulation of the random field. The same sets
of simulation runs were performed on the other random input parameters. This particularly made it
possible to calculate this sensitivity of the model to the random field through comparisons with the
results of the first model (without the random field).

This chapter will describe the new ftransport scenario based on the MARTHE code, using
geostatistical simulations of the shape of zones. The fourth section will discuss the application of
different techniques used to qualitatively and quantitatively analyse the effect of geostatistical
simulations on model output variables. The fifth section discusses the use of metamodels and the
associated results. A concise summary of all these results is given by way of conclusion.

2.3 SCENARIO WITH GEOSTATISTICAL SIMULATIONS

The construction of the first model for the STDR site (Volkova et al. [14]) required using the
available data. The modelled hydrogeological aquifer was sub-divided into three layers representing
the different geological media: two layers of fine-grained sand and an intermediary layer of coarse-
grained sand. The thickness of each layer is variable and was calculated by interpolation of the
lithologic data taking into account all the drill holes in the area. The data also revealed that the
coarse sand layer was not found everywhere in the domain: there are drill holes that do not contain
this layer. The shape of these zones void of coarse sand was interpolated using specialised
software and the drill hole data. Figure 2.1 shows the limit according to a horizontal plane between
the intermediary layer of coarse sand and the upper layer, making it possible to visualise the
absence of this layer in certain places (blue zones).

The numerical model — based on MARTHE - consists in propagating a source term over a
period from August 2002 to December 2010. The numerical diagram in question requires a CPU
time of about 15 minutes for one simulation. A total of 300 different simulations were performed
by randomly varying 20 scalar input parameters using a Monte-Carlo technique. The total CPU
time added up to three full days. All these calculations were analysed in the first study (Volkova
et al. [14)).

Our next objective was to vary the shape of the zones in which there was no coarse sand. A
method of geostatistical simulations was established in order to do this. This method is based on a
simulation method for categorical variables (called “indicator principle component approach”)
resulting from the “ipcsim” program of the GSLib software (Deutsch & Journel [3]). A spatial two-
category variable was used to simulate the shape of the zones void of coarse sand. The first
category corresponds to the presence of the layer of coarse sand, whereas the second indicates
the zones void of coarse sand. A Gaussian-type variogram was chosen with a correlation length
adapted to the heterogeneities that require simulating. The variogram was built on the basis of the
coarse sand layer thickness observed in the 66 drill holes on the site. Furthermore, the simulations
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were conditioned: for all simulated fields, the absence or presence of coarse sand corresponded to
all the available observations. Two different simulations are given in Figure 2.2.

ek

i e + - y

Ty

Figure 2.1: Materialisation of the model taking into account different zones in the second layer.
Blue zones (numbered 1 to 4) — no coarse sand; Orange zones — presence of coarse sand;
Green zones — moderate infiltration near the pipes; Red zones — high infiltration near the
pipes; the other number correspond to the 20 piezometers.

Figure 2.2: Examples of fields indicating the absence of the second layer (black zones).

For each calculation, a generated field was used in the matrix of permeability values for the second
layer of the model. When a mesh corresponds to the first category (presence of coarse sand), the
permeability of this grid cell is considered equal to the parameter per2 (characteristic value for
coarse sand). When a mesh corresponds to the second category (no coarse sand), the permeability
for this mesh is considered equal to the permeability of the first layer (upper layer) of the model
(parameter per1). The same procedure was used to generate volume distribution coefficients (by
using the parameters kd1 and kd2), as well as longitudinal (parameters d1 and d2) and
transverse (parameters dt1 and dt2) dispersivity values for the second layer of the model.




NT CEA/DEN/CAD/DER/SESI/LCFR/NT DO 4 06/03/08 0 7/50

NATURE CHRONO UNITE iNDICE PAGE

The initial study involved 20 scalar input parameters. Seeing that the variable shapes were taken
into account for the second layer, the parameterisation of the model must be reviewed. In the first
study, 5 parameters were associated with the permeability of the model’s second layer: perz1,
perz2, perz3, perz4 — for the four blue zones (Figure 2.1) and per2 for the orange zone of the
second layer. The value of per2 for zones with coarse sand was applied for the second layer (white
zones in Figure 2.2), whereas per1 was applied for zones void of coarse sand (black zones in
Figure 2.2). Four input parameters were therefore deleted. These are permeabilities for the
different blue zones in Figure 2.1.
Table 2.1 provides a summary of all the scalar parameters considered uncertain in this new
model;
- nominal values of parameters,
- distribution types,
- parameters of their distribution (minimum and maximum limits for the uniform distribution and
the coefficients of the Weibull law). The parameters of the uniform distribution have been
obtained by bibliographical analyses while the parameters of the Weibull distribution have been
obtained from a probability distribution fitting procedure on experimental data.

Parameters Notation| Model valt| Distributio! Interval or
type distribution
parameters
1 |Permeability of layer 1 per1 8 Uniform 1-15
2 |Permeability of layer 2 per2 15 Uniform 5-20
3 [Permeability of layer 3 per3 8 Uniform 1-15
8 |Longitudinal dispersivity of layer 3 d1 0.8 Uniform 0.05-2
9 |Longitudinal dispersivity of layer 3 d2 0.8 Uniform 0.05-2
10 |Longitudinal dispersivity of layer 3 d3 0.8 Uniform 0.05-2
11 |Transverse dispersivity of layer 1 dt1 0.08 Uniform 0.01 *d1-0.1*d1
12 |Transverse dispersivity of layer 2 dt2 0.08 Uniform 0.01*d2 — 0.1*d2
13 |Transverse dispersivity of layer 3 dt3 0.08 Uniform 0.01*d3 - 0.1*d3
14 |Volumetric distribution coefficient c. 1 kd1 5.1 Weibull 1.1597, 19.9875
15 |Volumetric distribution coefficient c. 2 kd2 0.34 Weibull 0.891597, 24.4455
16 | Volumetric distribution coefficient c. 3 kd3 5.1 Weibull 1.27363, 22.4986
17 |Porosity (all layers) por 0.3 Uniform 0.3-0.37
18 |Infiltration type 1 i1 0.0001 Uniform 0-0.0001
19 |Infiltration type 2 i2 0.004 Uniform i1-0.01
20 |Infiltration type 3 i3 0.02 Uniform i2-0,1

Table 2.1: Input parameters for the sensitivity analysis with nominal values, distribution type
and distribution coefficients.

There are now 16 random scalar input parameters in addition to the spatial parameter for the
shape of the second layer, taken into account by the geostatistical simulations. As in the first
study, the output variables under investigation correspond to the calculated concentrations in
2010 for the different piezometers on the site, which results in a total of 20 output variables.

Owing to an increased heterogeneity in the medium where the radionuclide spreads, MARTHE
calculations based on geostatistical simulations are much more CPU time-consuming than the
previous calculations. The numerical scheme results in a CPU time of about 40 minutes for one
simulation. For each simulation, the 16 scalar input parameters were varied randomly (Latin
hypercube sampling (LHS) plan). In total, 300 simulations of the MARTHE model were performed,
resulting in 8 full days of calculations.

In fact, the simulation sets for the 16 scalar input parameters are the same as those used in the
previous study (excepting the four input parameters in excess). It will therefore be possible to
calculate the correlation coefficients between the outputs of the two numerical models in order to
measure the degree of similarity between the two models, and thereby determine the impact of the
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geostatistical simulations. However, as the two output variables relative to the two models in the
same piezometer are not statistically independent, it will not be possible to perform standard
statistical tests to compare their distribution.

2.4 EFFECT OF GEOSTATISTICAL SIMULATIONS

241 Comparison of distributions

To analyse the effect of geostatistical simulations on the output of the MARTHE model, a
preliminary approach consisted in studying the change in the distributions of the model output
variables between calculations without geostatistical simulation and calculations with geostatistical
simulation. On the basis of 300 simulations performed for each model, the histograms for each
output were represented by superposing that of the geostatistical-free model on that of the
geostatistical model.

Figure 2.3 shows the superposition of the histograms for concentrations from two different
piezometers. Visually speaking, such a representation provides a lot of information. It can be seen

in these two examples that the addition of the geostatistical simulation variable has little impact on
the concentration distributions.

102K

100 —

!]llI]!]llT]l‘l!ll

ta 16 ] 1 2 2 4 g 2 15 11 12

o 2.2 3.4 0E (2] ;! 12 E 2 s £ 7 13
Figure 2.3: Output histograms without geostatistical simulation (red) and with geostatistical
simulation (blue) for two MARTHE outputs (concentrations for piezometers p1-76 and p102K).

However, comparison is difficult considering that the histograms have been divided up into different
classes of values, which prevents us from observing any subtlety in the distribution of the values. To
resolve this problem, density smoothing techniques were used via a non-parametric method based
on smoothing kernels (Gaussian in this case). We chose to use the “density” function of the R
statistics software (R Development Core Team [12], Venables & Ripley [13]). Figure 2.4
represents the smoothed densities of the calculated concentrations over the 20 piezometers.
Each figure makes it possible to visualise the impact of adding the geostatistical simulation
variable (red curves in relations to the blue curves).




NT CEA/DEN/CAD/DER/SESI/LCFR/NT DO 4 06/03/08 0 9/50

NATURE CHRONO UNITE INDICE PAGE
p102K p106 p107
@ > @ ~
&) 1 |
o - i o o
o ;
2 o z )‘ ] 7
g - g o f | & °7 i
o
4 e & E 2
- s : o - -
/ {
/ i i | >
= © Al L e B e e e i S T T T 1
0 01 2 3 4 & ¥ 2 3 4 & @ 00 02 04 06 08
p103 p104 p109 p110
. . o S —
@ A 1 = 1
2 = I il 5
© © I i ®
i -l | = o
g ¥ -2 L 5 i T o
& ~ - / | ; n & 3 -
o h | il o
“ /‘-—""‘/ \ | = ’ | B
= T T T T 1 ° == — ‘| T e Sy - | — 2  — T 1
0 2 4 6 8 10 12 0.0 02 04 08 0.0 05 10 15 0z 04 06 08
p31K p35K
p23 — - .
+ - l 1
n
. |
& o™ | ~t f
= & i & i
= z £ w !| g ° !
@ 2 o a k & o '
J
o A _|
2 I S S e e LE BSS i
< 0 2 4 & 8 10 0 2 4 8
o1 2 3 4
36K 37K
p27K p29K P P
- , 1 " - S 2,
A |
0 l N A W o ~ (\ |
& - | @ - [ |
= | z a i 2 2 o4 | ‘,
g i Z a (| B £ / s
7 B * 2 3 &« /1 ?
| 31/ \ RS/ |
w A | J — |
)}x\» -/ | o N = I e |
Sl — o &= —r— Q - T T T T
0.0 05 10 15 20 0o 1 2 3 4 5 a 2 4 G ] 0.0 0.5 1.0 1:6
p3s p4.76 pda pdb
@ S —— . 2
@ A ’ o
8 o
. . =+ i § e B . o
= =z o ! | & o :%
£ z 1] g z
g ® ] J I |8 e LI
5 | -
||
— |
P | =] . =
2 0 2 4 6 8 10 o 1 2 3 4 5 @ 0 1 2 2

Figure 2.4: MARTHE output densities both without geostatistical simulation (blue curves)
and with geostatistical simulation (red curves).

In view of these figures, the MARTHE outputs can be qualitatively classified into three categories:

* outputs where the distributions between calculations without geostatistical simulations
and calculations with geostatistical calculations are similar (p103, p106, p107, p36K),
which means that the shape of the second layer has little impact on MARTHE;
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« outputs where the distributions between calculations without geostatistical simulations
and calculations with geostatistical calculations are slightly different (p1-76, p102K,
p110, p2-76, p27K, p31K, p38, pda, p4b);

« outputs where the distributions between calculations without geostatistical simulations
and calculations with geostatistical calculations are different (p104, p109, p23, p29K,
p35K, p37K, p4-76), which means that the shape of the second layer has a great
impact on MARTHE.

There is apparently no link between this classification and the spatial location of the piezometers on
the site (see Figure 2.1). As in the previous study, this confirms the complexity and the non-linearity
of the simulated numerical models.

Generally speaking, it was observed that the distribution of values did not tend to spread, as we
could have expected when integrating geostatistical simulations into the model. The distribution
even tends to retract (see piezometers p102K, p104, p109, p27K, p29K, p31K, p35K, p4-76),
which does not at all prejudice the effect of the geostatistical simulations. This first purely-visual
analysis requires confirmation (or negation) by quantitative analysis.

2.4.2 Correlations

2.4.2.1 Correlation coefficients

The standard correlation coefficient (Pearson) measures the degree of linear correlation between
two quantitative numerical variables. Spearman’s correlation coefficient measures the degree of
monotonic correlation between two quantitative variables. It is therefore worth calculating these
coefficients between the outputs of two numerical models: a model with 20 scalar input parameters
without geostatistical simulation and another model with 16 scalar input parameters with
geostatistical simulation. For each of the 300 calculations for the two models, 16 input parameters
are similar. The Pearson and Spearman correlation coefficients therefore measure the linear or
monotonic effect of replacing four input parameters (permeabilities in zones without coarse sand) by
a geostatistical simulation of the shape of these zones. They are very sensitive to several extreme
values of a sample, which means they must be considered qualitatively and with caution.

Table 2.2 shows the two correlation coefficients between each output of the two models. in the
following analysis, the highest coefficient (absolute value) between that of Pearson and that of
Spearman was used for each output.

Piezometer [p1-76 |p102K | p103 p104 p106 p107 p109| p110 p2-76| p23
Pearson 35.16 -1.16 69.48 58.41 18.97 |63.64 24 .14]-13.01 11.20] 63.4¢
Spearman |43.68 | 76.52 87652 | 58.57 [40.71 46.04 25.81|21.45 2852 67.9¢
Piezometer | p27K p29K p31K p35K p36K p37K p38 | p4-76 pda pdb
Pearson 12.70 | 70.89 31.80 |-13.00 |60.63 | 34.44 58.5€|68.66 46.90| 47.4:
Spearman |12.89 | 79.33 52.34 |-20.45 |58.93 |36.88 -20.4]73.63 4.09 | 45.0¢

Table 2.2: Correlation coefficients (expressed as a percentage) between the outputs of the
model without geostatistical simulation and the outputs of the model with geostatistical

simulation.

In view of Table 2.2, the MARTHE outputs can be classified into three categories:

« outputs where the correlation coefficients are particularly high (> 66%): p102K, p103,
p23, p29K, p4-76, which means that the shape of the second layer has little impact on

MARTHE;
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* outputs where the correlation coefficients are close to 50% (between 33% and 66%): p1-
76, p104, p106, p107, p31K, p36K, p37K, p38, pda, pdb;

« outputs where the correlation coefficients are low (<33%): p109, p110, p2-76, p27K,
p35K, which means that the shape of the second layer has a high impact on MARTHE.

Upon preliminary analysis, the results of this interpretation seem to differ from the results
mentioned in paragraph 2.4.1.

Based on these results, it was nevertheless remarked that the piezometers revealing a high impact
of the shape of the second layer were located in the lower left zone of the model (see Figure 2.1),
i.e. out of the way in relation to the spread of contamination over time. This seems to correspond
to piezometers with low concentrations (because contamination diffusion is poor in this direction),
which probably means that the data cannot be considered robust enough in relation to a change in
the model (like the same of layer).

2.4.2.2 Correlation ratios

When measuring the correlation between a quantitative variable Y and a qualitative variable X
(which has a certain number of categories), the following correlation ratio is applied:

,  VarlE(Y|X)]

nx Var(Y)
which corresponds to the variance of the quantitative variable Y for each category of X. For our
application, we can therefore assume that Y is the output variable (**Sr concentration), and that X

corresponds to an input parameter with two categories: with and without geostatistical simulation.
The ratio of the empirical correlation can be calculated according to the following equation:

mn, (?1 _"g)z
n* oY)

where n is the total size of the data sample (X,Y), n; and f are the frequency and the mean of Y;

e (Y) =

corresponding to the first category of X (no simulations), n, and _Y; are the frequency and mean of

corresponding to the second category of Y (with simulations), and ofY) is the variance of Y. In this
case, n =600 and n{ = n, = 300.

When e? is equivalent to zero, there is generally independence between X and Y: the input
parameter X does not affect the variation in the output of model Y. This means that the presence
(or absence) of geostatistical simulations does not affect the concentrations obtained. When e?is
close to 1 (or to 100%), it means that there is strong dependence between the categories of the
input parameter X and the response Y.

The correlation ratios are given in Table 2.3. In this table, certain results seem incorrect as they
are greater than 100%. In fact, the hypotheses associated with the calculation of these correlation
ratios are not met because the data is not inter-independent. They are highly correlated for certain
outputs between two categories (as seen in the previous paragraph).

Piezometer | p1-76 | p102K | p103 p104 p106 | p107 |p109 |p110 | p2-76 | p23
e’ 0.65 49.37 0.02 1.90 4.98 0.18 8.81 0.29 0.05 5351
Piezometer | p27K | p29K | p31K | p35K | p36K | p37K p38 |p4-76 pda pdb
e’ 10.93 | 240.7 | 168.8 | 16,1 164 | 13.30 [12.69 |2899 |26.40 |9.77

Table 2.3: Correlation ratios between the output of two numerical models and the
“presence/ absence” category of the geostatistical simulation (as a percentage).
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In view of this table, it is possible to classify MARTHE outputs into three categories:

e outputs where the correlation ratios are less than 10%: p1-76, p103, p104, p107, p109,
p110, p2-76, p36K, p4b, which means that the shape of the second layer has little effect on
the MARTHE model;

* outputs where the correlation ratios are greater than 10% and less than 100%: p102K,
p27K, p37K, p38, p4a;

« outputs where the correlation ratios are abnormal because they are higher than 100%: p23,
p29K, p31K, p35K, p4-76, which means that the shape of the second layer has a high
impact on the MARTHE model.

As a first approach, these results seem rather different from the results in paragraph 2.4.2.1, and
more similar to those in paragraph 2.4.1. However, the confidence level given to these results is
relative seeing that the basic hypothesis of inter-independence of data was not met.

2.4.2.3 Comparison of sensitivity analyses

The next step was to perform sensitivity analyses in relation to the scalar input parameters for the
two MARTHE models: the model without geostatistical simulation and the model with geostatistical
simulation. Owing to the high non-linearity and even the non-monotony of the outputs of the two
MARTHE numerical models, we decided to use sensitivity indices based on the statistical tests that
only require the independence of the initial sample, and no hypothesis on the complexity of the
model. This was the case here, as the sets of input parameters were established randomly
(according to the LHS plan).

Helton et al. [6] provide a detailed list of indices based on statistical tests (parametric or non-
parametric). The idea is to partition the variation range of an input (and possibly the output) into
several parts, before testing to see if the distribution is different between the parts. It is therefore
necessary to use tests that enable the comparison of several (especially more than two) samples: F-
ANOVA, y*, Kruskal-Wallis, etc. The results are given in terms of the p-value, and are therefore not
expressed quantitatively as is the case for the standard regression coefficients which take into
account contribution to the output variance. However, the hypothesis of linearity or of monotony is no
longer required to validate the indices. The only hypothesis given concerns the independence of
observations. For the LHS plans, where observations are not independent, it seems that this
hypothesis is not restrictive and that the tests are both robust and fully applicable. Certain tests are
more robust that others; some do not assume that the sample follows a normal law. We used the
SSURFER software (looss [7]) in the suite, which is limited to the use of the “common locations”
(CL) test based on the Kruskal-Wallis test (Conover [2]).

The Kruskal-Wallis test can be considered as a generalisation of the Wilcoxon-Mann-Whitney test
with more than two samples. It is a non-parametric test and therefore does not offer any
hypothesis on the shape of the underlying distributions. Like many non-parametric tests, it does
not focus on the observation values but on their ranks, once these observations have been
pooled into the one mega-sample. The statistics of the Kruskal-Wallis test are built on the mean of
the observation ranks in the different samples. This is why the Kruskal-Wallis test is sometimes
called: univariate ANOVA on the ranks. As we have 300 data for each model, we chose a
breakdown into 10 segments in relation to the values of an input parameter, which results in tests
between 10 samples of 30 data each. A test was performed for each input parameter and each
output. The result of a statistical test is a p-value. A p-value equal to 0.1 means that the postulated
hypothesis cannot be rejected at confidence levels greater than or equal to 90%, i.e. that each
sample has the same Kruskal-Wallis statistics. Our final interpretation will therefore be: if the p-
value is greater than 0.1, the samples are statistically homogeneous and therefore the input
parameter does not affect the output. Below the threshold of 0.1, it can be said that the different
samples are no longer statistically homogeneous, and that the lower the p-value, the greater the
impact of the input parameter on the output.
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Table 2.4 provides the results of sensitivity analyses based on the CL test for each output and each
model (with and without geostatistical simulation). For the sake of simplifying our interpretation, we
have not given the p-values but only the classification (in order of decreasing influence) of the
inputs whose p-value is below 0.1.

agéosta| kd| kdi kd: d3 |11 ]i2 [i3 per| per| per| pz| pz| pz| DPZ| DO (
p1-76 | Withou 2 1 3 4
With 1 2
p102K|  Withou 2 1 3 4 6
With 1 2
0103 |  Withou 1 4 5 3 2 6
With 2 1 4 3
0104 |  Withou 1 2 3
With 1 3 2
p106 |  Withou 1 3 2
With 1 3 2
p107 Withou 1 3 2
With 2 4 1 3
n109 Withou 6 3 |1 2 5 dl 4
With 2 1 4
110 Withou 2 3 1 4 5 6
With 1 3 2
02-76 Withou 2 1 4 5 3
With 4 1 3 2
p23 Withou 3 1 2 4
With 1 4 2 3
p27K|  Withou 2 1 3
With 3 1 5 (2 4
p29K|  Withou 2 1 3 6 5 4 7
With 2 1 5 3 4 6
p31K |  Withou 1 2 3
With 1
p35K [ Withou 1 2 5 4 3
Avec 1 3 2
p36K|  Withou 1 2 4 5 3
With 1 3 2 4
p37K|  Withou 5 3 6 1 2 4
With 1 2 3
p38 Withou 1 2 4 3
With 2 1 5 3 4
0476 | Withou 3 1 2 5
With 2 1 3
p4a Withou 2 11 3
With 3 1 4 6 5 2
n4b Withou 2 4 11 7 3 6 8 5
With 1 3 5 4 2

Table 2.4: Results of the sensitivity analysis between the inputs and the outputs using the
CL test — Classification of the parameters whose p-values are below 0.1 (Blue: model without
geostatistical simulation. Red: model with geostatistical simulation).

As a preliminary analysis, the results of the model without geostatistical simulation (blue) seem
consistent with the results of Volkova et al. [14] which use indices based on the Sobol ranks and
indices calculated using metamodels. For certain output variables (non monotonic and poorly
modelled by a metamodel), slight differences can appear; the classification in Table 2.4 are to take
priority. The CL test is robust and not based on any hypothesis (Helton et al. [6]). The most
influential input parameters for this model are therefore the distribution coefficients of layers 1 and
2 (kd1 and kd2), and the intensity of infiltration in the leakage zones of pipes (i3). To a lesser
extent, the permeability of layers 2 and 3 (per2 and per3) are also often influential. It can also be
seen that the permeabilities.in the different zones without coarse sand are influential for several
piezometers.
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For the model with geostatistical simulation, the three most influential parameters are present: kd1,
kd2 and the permeability in layer 1 (per1). As previously mentioned, per2 and per3 are influential
to a lesser extent. Last of all, the distribution coefficient of layer 3 (kd3) also has a rather significant
impact. In terms of the sensitivity analysis, the only remarkable difference between the model
without geostatistical simulation and that with geostatistical simulation is the influence of i3 and
per1:

* The permeability of the first layer plays an important role in the model with geostatistical
simulation, whereas it hardly has any influence in the first model. This is logical in terms of
the numerical model: in the first model, there were 4 different parameters for the
permeability of zones without coarse sand in layer 2. In the new model, the permeability of
all these zones is combined with the permeability of layer 1 to shape parameter per1. It can
be said that the influence of parameters perz1, perz2, perz3 and per1 can be explained by
the influence of parameter per1. From a hydrogeological viewpoint, the transport of
radionuclides is partially determined by the direction of flow in the ground water, which
depends on the shapes of the different zones of permeability. The permeability of these
zones in the second layer of the model (where the concentration of radionuclides is taken
into account) is per1 and per2. For the model without geostatistical simulation, the
permeabilities of these zones were perz1, perz2, perz3 and perz4.

* The intensity of infiltration i3 in the pipe leakage zones does not play a major role in the
model with geostatistical simulation. This behaviour can be explained in the same way as
beforehand. Without geostatistical simulation, the flow in the model domain was mainly
influenced by the force of the leaks, with the forms of the less-permeable zones having been
set. With geostatistical simulation, the direction of flow depends on the shapes of the zones
(influenced by per1 and per2).

Through a finer analysis (output by output) of the influences of the inputs between the two models,
notable differences can be seen for practically all outputs. Even though the most influential
parameter is often the same, the following parameters differ most of the time. This confirms the
potential impact of the geostatistical simulations on the dynamics of the MARTHE model.

2.5 METAMODELS

When a numerical model is costly and non-linear, it is worth considering replacing it by a simpler
mathematical function, called a “metamodel” whose CPU time is negligible. Different types of
metamodels are available (Fang et al. [5]). We decided to focus on the use of Gaussian
processes, which is a very popular metamodel at the moment, as well as on the development of
a joint model more suitable for our problem.

2.5.1 Gaussian processes

In this section, we recommend building a “Gaussian process” type metamodel for each output of
each numerical model. We used the methodology developed by Marrel et al. [11]. We adjusted a
metamodel for each output of each model. The predictive quality of the metamodel is given by the
predictivity coefficient Q,, calculated by a cross-validation procedure. The Q, coefficient represents
the variance contribution explained by the metamodel in relation to the total variance of the output
variable.

The construction of a metamodel is possible as a function of the scalar input parameters. As the
random field results from geostatistical simulation (not being a scalar parameter), it is not possible
to integrate it into the construction of the metamodel. For the model with geostatistical simulation,
the metamodel can therefore not explain the variance contribution of the variable which is due to the
effect of the geostatistical simulation. To indicate the effect of the geostatistical simulation, we can
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therefore imagine using the Q, difference between the model without geostatistical simulation and
that with geostatistical simulation

Table 2.5 provides the Q; results for the two models and their difference. The few negative values
correspond to situations where the outputs of the model with geostatistical simulation were easier to
adjust that those without geostatistical simulation. The heterogeneous shape of layer 2 probably
tended to cancel out the non-linearities of the physical model. Generally speaking, a metamodel is
considered predictive when Qg is greater than 80%. This is the case for 8 out of 19 situations for
the model without geostatistical simulation, whereas this practically never occurs for the model
with geostatistical simulation.

In view of Table 2.5, the MARTHE outputs can be classified into three categories:

o outputs where the prediction differences are low (< 15%): p2-76, p27K, p29K, p36K, p37K,
pda, p4b, which means that the shape of the second layer has little impact on the MARTHE
model;

o outputs where the prediction differences are average (between 15% and 30%): p103,
p104, p106, p109, p23, p35K, p38;

e outputs where the prediction differences are particularly high (> 30%): p1-76, p102K, p107,
p31K, p4-76, which means that the shape of the second layer has a high impact on the

MARTHE model.
Piezometer p1.76| p102K| p103| p104| p106] p107] p109| p110 p2.76 [p23
Without geostat. 84 78 50 96 45 86 50 86 | 94
With geostat. 47 0 33 71 63 22 69 63 | 77
Difference 37 78 17 25 -18 64 -19 13 [ 17

Piezometer p27K| 029K | p31K| p35K| 036K| p37Kl 38| 0476 p4a [p4b
Without geostat. 43 93 69 56 60 90 52 96 9 |37
With geostat. 31 80 0 37 71 80 73 57 13 | 26
Difference 12 13 69 19 -11 10 -21 39 -4 |11

Table 2.5: Predictivity coefficients Q, (data given as a percentage and calculated by cross-
validation) of adjusted Gaussian process models.

As a first approach, these results appear rather different to the results mentioned in paragraphs
2.4.21 and 2.4.2.2. In view of these results and the difficulty in obtaining good metamodels by
Gaussian processes for the MARTHE data, it was decided that this Q, difference criterion was not
suitable for the given situation.

2.5.2 Joint modelling using Generalized Additive Model (GAM)

The joint model consists in adjusting a double metamodel to the data: one component for the mean
and another component for dispersion. The input random field is in fact rejected as an uncontrollable
(or noisy) parameter of the model. The mean and dispersion components are therefore expressed
via other scalar input parameters of the model. Thus, the dispersion component includes everything
that the scalar parameters only could not explain, i.e. the effect of the random field (including its
interactions with the scalar parameters).

looss et al. [9] (see chapter 3) illustrated the use of the joint model with a MARTHE output. This
result is therefore partial. Processing other outputs is problematic because MARTHE data with
geostatistical simulation is particularly complex: the random field effect is often predominant,
“outliers” threshold effects, highly-scattered values, etc. The joint model requires a manual, iterative
adjustment procedure for each component, which is therefore not very suitable. Developing an
automatic yet accurate adjustment procedure for this model therefore remains to be accomplished.




NT CEA/DEN/CAD/DER/SESI/LCFR/NT DO 4 06/03/08 0 16/50

NATURE CHRONO UNITE INDICE PAGE

2.6 CONCLUSION

Developed at least twenty years ago, global sensitivity analysis methods for numerical models are
limited to scalar input parameters. This research work consisted in investigating and in applying
several simple tools to assess the sensitivity of a model output variable in relation to a stochastic
input that is non-quantifiable by a small number of scalar parameters. Our application focused on a
hydrogeological model dependent on the simulations of a random input field. This random field was
built with the aim of correctly representing the heterogeneity of a hydrogeological parameter
(permeability in a layer of coarse sand).

All of our analyses were based on the fact that we were no longer able to perform calculations with
the numerical model. We only had the relatively limited calculation results obtained using both the
model with geostatistical simulation and the model without geostatistical simulation, which
correspond to the same sets of scalar input parameters. The different methods used to compare the
results of these calculations (with and without geostatistical simulation) were tested:

e comparison of the output distributions of the two models. This analysis made it possible to
graphically visualise the impact of the geostatistical simulation, without however quantifying
it;

« analysis of the correlation coefficients between the outputs of the two models. These
indicators were used to measure the change induced by the geostatistical simulations. They

are sensitive to a few extreme values in a sample, and have to be considered qualitatively
and with precaution;

« study of the correlation ratios between the output of both models and the “with/without
geostatistical simulation” category. These indicators made it possible to quantitatively
measure the effect of a qualitative variable (with/without geostatistical simulation) upon a
quantitative variable (model output). However, the reliability of these results is relative
seeing that the basic hypothesis of independence between data was not met in our study;

« comparison of sensitivity analyses for the two models in relation to scalar inputs. This is a
qualitative method only, designed to check if both models have different influential input
parameters. It is used to better understand the behaviour of models and the effect of
geostatistical simulation upon other input parameters (via their interactions with the random
field);

= comparison of the construction of metamodels (based on Gaussian processes) for both
models. This is the same type of method as the previously one but this time based on the
construction of a metamodel. This method produced very little information in our case;

 construction of a metamodel based on the joint modelling of the mean and of the dispersion.
This method is the most accurate and made it possible to obtain a total sensitivity index for
the “random field” input variable. However, this method requires the construction of a
metamodel for the mean and a metamodel for dispersion. This method could not be
implemented in our application owing to the extreme complexity of our data and an
excessive number of input parameters. looss et al. [9] (see chapter 3) nevertheless
managed to apply the method to an output of the model with geostatistical simulation.

In conclusion, our results showed the significant impact of geostatistical simulations on the dynamic
of the MARTHE model. This demonstration supports the assumption supposing the limitation of our
modelling in relation to the modelling of different layers with different hydrogeological behaviours.
The piezometers that proved to be the most sensitive to the shape of the second layer are in fact
those located in the background in relation to the direction in which contamination spreads over
time. This corresponds to piezometers to low concentration values.
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3 GLOBAL SENSITIVITY ANALYSIS OF STOCHASTIC COMPUTER MO-
DELS WITH GENERALIZED ADDITIVE MODELS

3.1 ABSTRACT

The global sensitivity analysis, used to quantify the influence of uncertain input parameters on the
response variability of a numerical model, is applicable to deterministic computer codes (for which
the same set of input parameters gives always the same output value). This chapter proposes a glo-
bal sensitivity analysis method for stochastic computer codes (having a variability induced by some
uncontrollable parameters). The mean and the dispersion of the code outputs are modeled by two
interlinked Generalized Additive Models (GAM). The “mean” model allows to obtain the controllable
parameters sensitivity indices, while the “dispersion” model allows to obtain the uncontrollable para-
meters ones. The relevance of the proposed model is analyzed with two case studies. Resuits show
that the joint modeling approach leads to more accurate sensitivity index estimations, especially for
the joint GAM model.

3.2 INTRODUCTION

Many phenomena are modeled by mathematical equations which are implemented and solved by
complex computer codes. These computer models often take as inputs a high number of numerical
parameters and physical variables, and give several outputs (scalars or functions). For the develop-
ment of such computer models, its analysis, or its use, the global Sensitivity Analysis (SA) method
is an invaluable tool (Saltelli et al. [26], Kleijnen [12], Helton et al. [6]). It takes into account all the
variation ranges of the inputs, and tries to apportion the output uncertainty to the uncertainty in the in-
put factors. These techniques, often based on the probabilistic framework and Monte-Carlo methods,
require a lot of simulations. The uncertain input parameters are modeled by random variables and
characterized by their probabilistic density functions. The SA methods are used for model calibration,
model validation, decision making process, i.e. all the processes where it is useful to know which
variables mostly contribute to output variability.

The current SA methods are applicable to the deterministic computer codes, codes for which the
same set of input parameters always gives the same output values. The randomness is limited to the
model inputs, whereas the model itself is deterministic. Most computer codes belong to this kind of
model. For example in the nuclear engineering domain, global sensitivity analysis tools have been
applied to waste storage safety studies (Helton et al. [6]), environmental models of dose calculations
(looss et al. [10]), pollutant transport models in the groundwater (Volkova et al. [31]). In such industrial
studies, numerical models are often too time consuming for applying directly the global SA methods.
To avoid this problem, one solution consists in replacing the time consuming computer code by an
approximate mathematical model, called response surface or surrogate model or also metamodel
(Sacks et al. [24], Fang et al. [3]). This function must be as representative as possible of the com-
puter code, with good prediction capabilities and must require a negligible calculation time. Several
metamodels are classically used ; polynomials, splines, neural networks, Gaussian processes (Chen
et al. [2], Fang et al. [3]).

In this chapter, we are not interested by deterministic computer models but by stochastic nume-
rical models - i.e. when the same input parameters set leads to different output values. The model
is therefore intrinsically stochastic because of some “uncontrollable” parameters. For the uncertainty
analysis, Kieijnen [12] has raised this question, giving an example concerning a queueing model. In
the nuclear engineering domain, examples are given by Monte-Carlo neutronic models used to cal-
culate elementary particles trajectories, Lagrangian stochastic models for simulating a large number
of particles inside turbulent media (in atmospheric or hydraulic environment). In our study, “uncontrol-
lable” parameters correspond to parameters that are known to exist, but unobservable, inaccessible
or non describable for some reasons. It includes the important case in which observable vectorial
parameters are too complex to be described by a reasonable number of scalar parameters. This last
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situation concerns the codes in which some simulations of random processes are used : the output
values of the computer code depend on the realizations of these random functions. For example, one
can quote some partial differential equation resolutions in heterogeneous random media simulated by
geostatistical techniques (fluid flows in oil reservoirs, Zabalza-Mezghani et al. [36], acoustical wave
propagation in turbulent fluids, looss et al. [8]), where the uncontrollable parameter is the simulated
spatial field involving several thousand scalar values for each realization.

For an environmental assessment problem, Tarantola et al. [29] propose a first solution by in-
troducing a binomial input parameter ¢ governing the simulation of the random field. Therefore, the
sensitivity index of £ quantifies the influence of the random field on the model output variable. Howe-
ver, this method does not give any idea about the influence of the possible interactions between the
uncontrollable parameter and the other uncertain input parameters. Moreover, to perform a sensitivity
analysis, such approach requires a large number of computer model calculations (several hundreds
per input parameter). For most applications, it is impossible due to intractable CPU times : computer
codes have to be substituted for metamodels.

For stochastic computer models, classical metamodels (devoted to approximate deterministic
computer models) are not pertinent. To overcome this problem, the commonly used Gaussian pro-
cess (Gp) model is interesting. Kleijnen & van Beers [13] have demonstrated the usefulness of Gp
for stochastic computer model. Moreover, Gp can include an additive error component (called the
“nugget effect”) by adding a constant term into its covariance function (Rasmussen & Williams [22]).
However, it supposes that the error term is independent of the input parameters (homoscedasticity
hypothesis), which means that the uncontrollable parameter does not interact with controllable pa-
rameters. This hypothesis limits the usefulness of the Gp model to particular cases. To construct
heteroscedastic metamodels for stochastic computer codes, Zabalza-Mezghani et al. [35] model the
mean and the dispersion of computer code outputs by two interlinked Generalized Linear Models
(GLMs). This approach, called the joint model, has been previously studied in the context of ex-
perimental data modeling (McCullagh & Nelder [16]). Compared to the Gp model, this approach
theoretically suits the study of heteroscedastic situations and allows the obtention of a model for the
dispersion.

Following the work of Zabalza et al., looss & Ribatet [9] have recently introduced the joint model
to perform a global sensitivity analysis of a stochastic model. Results show that a total sensitivity
index of all the uncontrollable parameters can be computed using the dispersion component of the
joint model. However, the parametric form of the GLM framework provides some limitations when
modeling complex computer code outputs. To resolve this problem, this chapter suggests the use
of non parametric models to allow more flexibility and complexity while fitting to the data. Due to its
similarity with GLMs, Generalized Additive Models (GAM) are considered (Hastie & Tibshirani [4],
Wood & Augustin [34]). GAMs allow variable and model selections via a quasi-likelihood function,
classical statistical tests on coefficients, and graphical displays.

This chapter starts by describing the joint model construction, firstly with the GLM, secondly with
the GAM. The fourth section describes the global sensitivity analysis for deterministic models, and its
extension to stochastic models using joint models. Particular attention is devoted to the calculation
of variance-based sensitivity indices (the so-called Sobol indices). Considering a simple analytic
function, the performance of the proposed approach is compared to other commonly used models.
Next, an application on an actual industrial case (groundwater radionucleide migration modeling) is
given. Finally, some conclusions synthesize the contributions of this work.

3.3 JOINT MODELING OF MEAN AND DISPERSION

3.3.1 Using the Generalized Linear Models

The class of GLM allows to extend the class of the traditional linear models by the use of : (a)
a distribution which belongs to the exponential family; (b) and a link function which connects the
explanatory variables to the explained variable (Nelder & Wedderburn [19]). Let us describe the first
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component of the model concerning the mean :

EY:) =, mo=g(m) =276,
Var(Y;) = ¢iv() ,

where (Y;)i=1. » are independent random variables with mean p;; z;; are the observations of the
parameter X ; /3; are the regression parameters which have to be estimated; »; is the mean linear
predictor; g(-) is a differentiable monotonous function (called the link function); #; is the dispersion
parameter and v(-) is the variance function. To estimate the mean component, the functions g(-) and
v(-) have to be specified. Some examples of link functions are given by the identity (traditional linear
model), root square, logarithm, and inverse functions. Some examples of variance functions are given
by the constant (traditional linear model), identity and square functions.

Within the joint model framework, the dispersion parameter ¢; is not supposed to be constant as
in a traditional GLM, but is supposed to vary according to the model :

E(d) =d¢i,  G=h(g) =D ;i
Var(d;) = Tva(¢i) ,

where d; is a statistic representative of the dispersion, ; are the regression parameters which have
to be estimated, %.(-) is the dispersion link function, ¢; is the dispersion linear predictor, 7 is a constant
and vy4(+) is the dispersion variance function. v;; are the observations of the explanatory variable U;.
The variables (U;) are generally taken among the explanatory variables of the mean (X;), but can
also be different. To ensure positivity, h(¢) = log ¢ is often chosen for the dispersion link function. For
the statistic representing the dispersion d, the deviance contribution (which is close to the distribution
of a x?) is considered. Therefore, as the x? is a particular case of the Gamma distribution, v4(¢) = ¢*
and 7 ~ 2. In particular, for the Gaussian case, these relations are exact : d is x? distributed and
T =2

The joint model is fitted using Extended Quasi-Loglikelihood (EQL) (Nelder & Pregibon [18]) maxi-
mization. The EQL behaves as a log-likelihood for both mean and dispersion parameters. This jus-
tifies an iterative procedure to fit the joint model. First, a GLM is fitted on the mean; then from the
estimate of d, another GLM is fitted on the dispersion. From the estimate of ¢, weights for the next
estimate of the GLM on the mean are obtained. This process can be reiterated as many times it is
necessary, and allows to entirely fit our joint model (McCullagh & Nelder [16]).

Statistical tools available in the GLM fitting are also available for each component of the joint

model : deviance analysis, Student and Fisher tests, residuals graphical analysis. It allows to make
some variable selection in order to simplify model expressions.
Remark : Let us note that it is possible to build polynomial models for the mean and the variance
separately (Vining & Myers [30], Bursztyn & Steinberg [1]). This approach, called the dual mode-
ling, consists in repeating calculations with the same sets of controllable parameters (which is not
necessary in the joint modeling approach). The dual modeling approach has been successfully applied
in many situations, especially for robust conception. problems : optimizing a mean response function
while minimizing the variance. However for our purpose (accurate fitting of the mean and dispersion
components), it has been shown that this dual model is less competitive than the joint model (Zabalza
et al. [35], Lee & Nelder [14]) : the dual modeling approach fits the dispersion model given the mean
model and this approach does not always lead to optimal fits.

1)

(2)

3.3.2 Extension to the Generalized Additive Models

Generalized Additive models (GAM) were introduced by Hastie & Tibshirani [4, 5] and allow a
linear term in the linear predictor n = . 3, X; of equation (1) to be replaced by a sum of smooth
functions 1 = 3, s;(X;). The s;(.)’s are unspecified functions that are obtained by fitting a smoother
to the data, in an iterative procedure. GAMs provide a flexible method for identifying nonlinear cova-
riate effects in exponential family models and other likelihood-based regression models. The fitting of
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GAM introduces an extra level of iteration in which each spline is fitted in turn assuming the others
known. GAM terms can be mixed quite generally with GLM terms in deriving a model.

One common choice for s; is the smoothing spline (Wahba [32]) - i.e. splines with knots at each
distinct value of the variables. In regression problems, smoothing splines have to be penalized in
order to avoid data overfitting. Wood & Augustin [34] have described in details how GAMs can be
constructed using penalized regression splines. This approach is particularly well-suited because it
allows the integrated model selection via Generalized Cross Validation (GCV) and related criteria, the
incorporation of multi-dimensional smooths and relatively well founded inference using the resulting
models. Because numerical models often exhibit strong interactions between input parameters, the
incorporation of multi-dimensional smooth (for example the bi-dimensional spline term s;;(X;, X;)) is
particularly important in our context.

GAMs are generally fitted using penalized likelihood maximization. For this purpose, the likelihood
is modified by the addition of a penalty for each smooth function, penalizing its “wiggliness”. Namely,
the penalized loglikelihood is defined as :

L 92s; 2
PL:L+ZAj/(—8—»§> d; (3)
i=1 i

where L is the loglikelihood function, p is the total number of smooth terms and A; are “tuning”
constants which compromise between goodness of fit and smoothness.
Estimation of these “tuning” constants is generally achieved using the GCV score minimization.

The GCV score is defined as : p
Ve

(n — DoF)?

where n is the number of data, d is the deviance and DoF is the effective degrees of freedom, i.e.
the trace of the so-called “hat” matrix. Extension to (E)QL models is straightforward by substituting
the likelihood function L and the deviance d for their (extended) quasi counterparts.

We have seen that GAMs extend in a natural way GLMs. Therefore, it would be interesting to
extend the joint GLM model to a joint GAM one. Such ideas have been proposed in Rigby & Stasino-
poulos [23] where both the mean and variance were modeled using semi-parametric additive models
(Hastie & Tibshirani [5]). This model is restricted to observations following a Gaussian distribution
and is called Mean and Dispersion Additive Model (MADAM). As our model is based on GAMs and
by analogy with the denomination “joint GLM”, we call it “joint GAM” in the following. Rigby & Stasino-
poulos [23] proposed an algorithm fo fit the MADAM model. This fitting procedure is exactly the same
than the one for the two interlinked GLMs, apart from the stopping rule. Indeed, the two interlinked
GLMs (resp. GAMs) model is fitted when the EQL (resp. PEQL) remains stable within the iterative
procedure.

(4)

Sgev =

3.4 GLOBAL SENSITIVITY ANALYSIS
3.4.1 Deterministic models

The global SA methods are applicable to deterministic computer codes, codes for which the same
set of input parameters always leads to the same response value. This is considered by the following
model :

f:RP SR
X Y = f(X)

(5)

where Y is the output, X = (X1, ..., X,) are p independentinputs, and f is the model function, which
is analytically not known. In this section, let us recall some basic ideas on Sobol sensitivity indices
applied on this model.
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Among quantitative methods, variance-based methods are the most often used (Saltelli et al.
[26]). The main idea of these methods is to evaluate how the variance of an input or a group of inputs
contributes into the variance of output. We start from the following variance decomposition :

Var[Y] = Var [E (Y] X,)] + E [Var (Y|X,)] | (6)

which is known as the total variance theorem. The first term of this equality, named variance of the
conditional expectation, is a natural indicator of the importance of X; into the variance of ¥ : the
greater the importance of X;, the greater is Var[E(Y'|X;)]. Most often, this term is divided by Var[Y
to obtain a sensitivity index in [0, 1].

To express the sensitivity indices, we use the unique decomposition of any integrable function on
[0, 1]7 into a sum of elementary functions (see for example Sobol [28]) :

p p
FX1, o, Xp) = fo+ ) LX)+ fu(Xe Xp) + o+ frap(X,- Xp) (7)
i i<y

where fj is a constant and the other functions verify the following conditions :

1

Fioa(@iy, o ymiy)dey, =0 Ve=1,...,s, Yir,...,is} €{L,...,p}. (8)
0
" Therefore, if the X;s are mutually independent, the following decomposition of the model output
variance is possible (Sobol [28]) :

P p P
Var[Y]= > "Vi(Y)+ > Vy(V)+ D Vig(Y) + ..+ Vig p(Y), (9)
i i<j i<j<k
where Vi(Y) = Var[E(Y|X;)], Vi;(Y) = Var[E(Y|X;X;)] — V;(Y) — V;(Y),... One can thus defines
the sensitivity indices by :

C_ Var[E(Y[Xy)]  Vi([Y) V) o Vi)
T T Var(Y)  Var(Y) CY 7 Var(Y)' “YFT Var(Y)

These coefficients are called the Sobol indices, and can be used for any complex model functions
f. The second order index S;; expresses sensitivity of the model to the interaction between the
variables X; and X (without the first order effects of X; and X;), and so on for higher orders effects.
The interpretation of these indices is natural as their sum is equal to one (thanks to equation (9)) :
the larger and close to one an index value, the greater is the importance of the variable or the group
of variables linked to this index.

For a model with p inputs, the number of Sobol indices is 27 — 1; leading fo an intractable number
of indices as p increases. Thus, to express the overall sensitivity of the output to an input X;, Homma
& Saltelli [7] introduce the total sensitivity index :

St, = S; + ZSij + Z Sijk + Z S, (11)

i Ji ki, i<k le#i

(10)

where #1 represents all the “non-ordered” subsets of indices containing index 4. Thus, Zle#i S is
the sum of all the sensitivity indices containing 7 in their index. For example, for a model with three
input parameters, Sy, = S1 + Sio + S13 + Sie3.

The estimation of these indices can be done by Monte-Carlo simulations (Sobol [28], Saltelli [25])
or by FAST method (Saltelli et al. [27]). Recent algorithms have also been introduced to reduce the
number of required model evaluations significantly. As explained in the introduction, an alternative
method consists in replacing complex computer models by metamodels which have negligible cal-
culation time. Estimation of Sobol indices by Monte-Carlo techniques with their confidence intervals
(requiring thousand of simulations) can then be done using these response surfaces. In practice,
when the model has a great number of input parameters, only the first order and total Sobol indices
are estimated.
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3.4.2 Stochastic models

In this work, models containing some intrinsic alea, which is described as an uncontrollable ran-
dom input parameter ¢, are called “stochastic computer models”. Similarly from equation (5), consider
the following (stochastic) model :

g:RPF -5 R
(12)
X =Y =fX)+rvEX: e

where X are the p controllable input parameters (independent random variables), Y is the output, f
is the deterministic part of the model function and v is the stochastic part of the model function. v
is considered to be centered : E(v) = 0. The notation v(¢,X : £) means that v depends only on ¢
and on the interactions between ¢ and X. The additive form of equation (12) is deduced directly from
the decomposition of the function g into a sum of elementary functions depending on (X, ¢) (like the
decomposition in Eq. (7)).
For a stochastic model (12), the joint model introduced in section 3.3 enables us to recover two
GLMs or two GAMs :
Y, =E(Y[X) = p (13)

by the mean component (Eq. (1)), and
Yy = Var(Y|X) = ¢v(u) (14)

by the dispersion component (Eq. (2)). If there is no uncontrollable parameter ¢, it leads to a determi-
nistic model case with Y; = Var(Y|X) = 0. By using the total variance theorem (Eq. (6)), the variance
of the output variable Y can be decomposed by :

Var[V (X, )] = Var[E (Y|X)] + E [Var (Y|X)] = Var (Yy,) + E (Yy) . (15)

According to model (12), Y,, is the deterministic model part, and Yy is the variance of the stochastic
model part :

Y, = f(X> s
Yy = Varv(e, X : €)X]

(16)

The variances of Y and Y,, are now decomposed according to the contributions of their input
parameters X. For Y, the same decomposition than for deterministic models holds (Eq. (9)). However,
it includes the additional term E (V) (the mean of the dispersion component) deduced from equation
(15). Consequently,

var(Y) = Z%(Y) + V() + D0 Vi) + o+ Via p(Y) +E(Ya) - (17)

1<j i<j<k

For the mean component Y,,,, we have

p P P
Var(Ye,) = > VilVm) + 3 Vi) + Y Vigr(Ym) + o+ Vizp(Vin) - (18)
7 1<j <j<k
By noticing that
Vi(Ym) = Var[E(Yy|X;)] = Var(E[E(Y |X)|X;]} = VarE(Y|X;)] = Vi(Y) (19)

and from equation (10), the sensitivity indices for the variable Y (X, ¢) according to the controllable
parameters X = (X;);—1.., can be computed using :

G — Vi(Ym> - Vij(Ym)

“Uvary)! 7Y var(y)’

(20)
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These Sobol indices can be computed by classical Monte-Carlo techniques, the same ones used in
the deterministic model case. These algorithms are applied on the metamodel defined by the mean
component Y,,, of the joint GLM or the joint GAM.

Thus, all terms contained in Var(Y,,) of the equation (15) have been considered. It remains to
estimate E(Y;) by a simple numerical integration of Y;; following the law of X. Y; is evaluated with a
metamodel, for example the dispersion component of the joint GLM or joint GAM. E(Y}) includes all
the decomposition terms of Var(Y") (according to X and ¢) not taken into account in Var(Y,) i.e. all
terms involving e. Therefore, the total sensitivity index of € is

 E(Ya)
= Var(Y)

(21)

As Y, is a positive random variable, positivity of St is guaranteed. In practice, Var(Y") can be estima-
ted from the data or from simulations of the fitted joint model :

Var(Y) = Var(Yy,) + E(Y) . (22)

If Var(Y) is computed from the data, it seems preferable to estimate E(Yy) with Var(Y') — Var(Y:,)
to satisfy equation (15). In our applications, the total variance will be estimated using the fitted joint
model (Eq. (22)).

Finally, let us note that it is not possible to quantitatively distinguish the various contributions in Sz,
(Se, Sie, Sije, -..). However, the analysis of the terms in the regression model Y, and their ¢-values
give qualitative contributions. For example, if an input parameter X; is not present in Yy, we can
deduce the following correct information : S;. = 0. Moreover, if the ¢-values analysis and the deviance
analysis show that an input parameter X; has a smaller influence than another input parameter X; ,
we can suppose that the interaction between X; and ¢ is less influential than the interaction between
X; and e. Therefore, giving this kind of information is an improvement compared to the Tarantola’s
method (Tarantola et al. [29], see introduction).

In conclusion, this new approach, based on joint models to compute Sobol sensitivity indices, is
useful if the following conditions hold :

— if the computer model contains some uncontrollable parameters (the model is no more deter-

ministic but stochastic) ;

— if a metamodel is needed due to large CPU times of the computer model;

— if some of the uncontrollable parameters interact with some controllable input ones;

— if some information about the influence of the interactions between the uncontrollable parame-

ters and the other input parameters is of interest.

3.5 APPLICATIONS
3.5.1 An analytic test case : the Ishigami function

The proposed method is first illustrated on an artificial analytical model with 3 input variables,
called the Ishigami function (Homma & Saltelli [7], Saltelli et al. [26]) :

Y = f(X1, Xo, X3) = sin(X}) + 7sin(X2)? + 0.1X3 sin(X1) , (23)

where X; ~ U|—m;x] for « = 1,2,3. For this function, all the Sobol sensitivity indices (51, Sz, 53,
S1o, S13, Sa3, S123, STy, ST3, Sy) @re known. This function is used in most intercomparison studies
of global sensitivity analysis algorithms. In our study, the classical problem is altered by considering
X1 and X, as the controllable input random variables, and X3 as an uncontrollable input random
variable. It means that the X3 random values are not used in the modeling procedure ; this parameter
is considered to be inaccessible. However, sensitivity indices have the same theoretical values as in
the standard case. «
For the model fitting, 1000 samples of (X1, X», X3) were simulated leading to 1000 observations
for Y. The GLM and GAM (with their relative joint extensions) are compared.to the Gaussian process
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(Gp) model including or not the additive error component (the nugget effect). The fitting methodology
is the one proposed by Marrel et al. [15] (based on the Welch et al. [33] sequential algorithm) which
contains a linear regression component and a Gp defined by a generalized exponential covariance.
To compare the predictivity of different metamodels, we use the predictivity coefficient @2, which is
the determination coefficient R? computed from a test sample (composed here by 10000 randomly
chosen points). For the joint model, Q2 is computed on the mean component.

Simple GLM

First, a fourth order polynomial for the GLM is considered. Only the explanatory terms are selected
in our regression model using analysis of deviance and the Fisher statistics. The Student test on the
regression coefficients and residuals graphical analysis make it possible to judge the model quality.
For a simple GLM fitting, one obtains

Y =1.92 + 2.60X; + 2.17X7 — 0.29X; — 0.29X7 . (24)

The explained deviance of this model is Dexpl = 61.3%. The predictivity coefficient is of the same or-
der: Q, = 60.8%. We see that it remains 39% of non explained deviance due to the model inadequacy
and/or to the uncontrollable parameter.

Joint GLM

One tries to model the data by a joint GLM. The mean component gives the same model (24) as
the simple GLM. For the dispersion component, using analysis of deviance techniques, no significant
explanatory variable was found. Thus, the dispersion component is supposed to be constant; and the
joint GLM is equivalent to the simple GLM approach - but with a different fitting process. In addition,
as one obtains the same explained deviance value as the simple GLM one, it corroborates the joint
GLM approach relevance - even for a homoscedastic parameterization.

Simple GAM

We will be now studying the non parametric modeling. A simple GAM gives the following result :

Y =3.76 - 2.67X1 + S(X1) + S(XQ) , (25)

where s(-) is a spline term and where we have kept some parametric terms by applying a term selec-
tion procedure. The explained deviance of this model is Dexp| = 76.8% : the simple GAM approach
clearly outperforms the simple GLM one. Even if this is obviously related to an increasing number of
parameters, it is also explained by the fact that GAMs are more adjustable than GLMs : the number
of parameters remains very small compared to the data size (1000). This is confirmed by the value
of the predictivity coefficient @, = 75.1% which is very close to the explained deviance (76.8%).

Gp model

Let's now compare this GAM with the popular Gp metamodel. Without introducing any nugget effect,
the obtained Gp gives Q9 = 72.8%. By introducing of the nugget effect (additional error with constant
variance), the obtained Gp gives Q, = 74.3%. Consequently, the Gp model including a nugget effect
is similar to the simple GAM one. The variance of the nugget effect is estimated to 10% of the total
variance, when one expects to obtain the residual variance : 1 — Q2 = 25.7%. We will be discussing
in the following section the consequence of this wrong estimation.

Joint GAM

One models now the data by a joint GAM. The resulting model is described by the following features :

Yy = 3.75 — 3.06 X1 + s(X1) + s(X2) , (26)
Y; = 0.59 + S(Xl) .

The explained deviances are Dgyp = 92.8% for the mean component and Deyp) = 36.7% for the
dispersion component. The predictivity coefficient of the mean component is Q4 = 75.5%, which is
slightly better than the simple GAM and Gp results.

Discussion

The explained deviance given by the joint GAM mean component is clearly larger than the one given
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by the simple GAM approach. This last point demonstrates the efficiency of the joint modeling of the
mean and dispersion approach when heteroscedasticity is involved. Indeed, the joint procedure leads
to suited prior weights for the mean component. The joint GAM improves both the joint GLM, simple
GAM and Gp approaches :

(a) due to the GAMs flexibility, the explanatory variable X is identified to model the dispersion com-
ponent (the interaction between X and the uncontrollable parameter X is therefore retrieved) ;

(b) the joint GAM explained deviance (93%) for the mean component is clearly larger than the simple
GAM and joint GLM ones (Joint GLM : 61%, simple GAM : 77%).

Figure 3.1 shows the observed response against the predicted values for the three models Joint
GLM, Simple GAM and Joint GAM. In the following graphical analyses, we restrict our attention to
these three models, and not to the Gp model. Indeed, comparisons are not possible with the Gp
model because it interpolates the observed responses and the observed residuals are worth zero.
Even if the nugget effect introduction allows to obtain non zero residuals, it is not appropriate to
perform a statistical analysis of these residuals and a comparison with another model residuals.

On one hand, the advantage of the GAM approaches is visible in the Figure 3.1 as the dispersion
around the y = z line is clearly reduced. On the other hand, Figure 3.2 shows that the deviance
residuals for the mean component of the joint GAM seem to be more homogeneously dispersed
around the z-axis ; leading to a better prediction on the whole range of the observations. Thus, the
joint GAM approach is the most competitive model.

Joint GLM Simple GAM Joint GAM
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Fig. 3.1 — Observed response variable versus the predicted values for the three models : Joint
GLM, Simple GAM, Joint GAM (Ishigami application).
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Fig. 3.2 — Deviance residuals for the Simple and Joint GAMs versus the fitted values (Ishigami
application). Dashed lines correspond to local polynomial smoothers.

Figure 3.3 shows the proportion A of observations that lie within the a% theoretical confidence

L&
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interval in function of the confidence level «. By definition, if a model is suited for both mean and
dispersion modelings, the points should be located around the y = z line. As a consequence, this
plot is useful to quantify the goodness of fitting accuracy of the models. Figure 3.3 shows that joint
GLM approach is the most accurate model. The joint GAM is less relevant but has a homogeneous
dispersion around the y = z line. The simple GAM approach systematically lead to overestimations.
In particular, it means that the variance, supposed to be a constant, is overestimated and that the
dispersion is poorly predicted.
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Fig. 3.3 — Proportion A (in percent) of observations that lie within the «% theoretical confi-
dence interval in function of the confidence level « (Ishigami application).

Lastly, from Figures 3.1-3.3, the joint GAM seems to be the most competitive one. Indeed, the
GAM flexibility allows to model accurately the mean component while the dispersion seems to be
correctly modeled.

Sobol indices

Table 3.5.1 depicts the Sobol sensitivity indices for the joint GLM and the joint GAM using equations
(20) and (21). The standard deviation estimates (sd) are obtained from 100 repetitions of the Monte-
Carlo estimation procedure (which uses 104 model computations for one index estimation). When this
Monte-Carlo procedure is used to estimate the Sobol index, we report “MC” in the “Method” column;
while “Eq” indicates that the sensitivity indices have been deduced from the joint model regressive
eguations. Therefore, no estimation errors (sd) are associated to these indices (except for total indices
St. which can be deduced from .5;). When no quantitative deduction on the sensitivity index can be
made with this process, the three column values are marked with the symbol “—".

The joint GLM gives only a good estimation of Sy, while Sy and Sp, are badly estimated (errors
greater than 30%). S1g is correctly put to zero by looking directly at the joint GLM mean component
formula (the same as the equation (24)). However, some conclusions drawn from the GLM dispersion
component formula (which is a constant) are wrong. As no explanatory variable is involved in this
formula, the deduced interaction indices are equal to zero : S13 = Sy3 = Si93 = 0. Thus, S5 = Sp,, =
0.366 while the correct values of S3 and St, are respectively zero and 0.243.

Contrary to the joint GLM, the joint GAM gives good approximations of all the Sobol indices (errors
smaller than 7%), including St,. Moreover, the deductions drawn from the model formulas (25) are
correct (S, = Sg, S12 = Sas = S123 = 0). The only drawback of this method is that some indices
remain unknown due to the non separability of the dispersion component effects. However, it can be
deduced that S13 is non null due to the explicative effect of X in the dispersion component.

Table 3.5.1 gives also the Sobol indices computed by the same Monte-Carlo procedure using
two classical metamodels as the simple GAM and the Gp models. To estimate the first order Sobol
indices S; = V;(Y;,)/Var(Y) (for i = 1,2), the metamodel is used to compute V;(V;,) and the fitted
data (the 1000 observations of Y) to compute Var(Y"). To estimate the total sensitivity index S, of the
uncontrollable parameter, the metamodel predictivity coefficient Qo = 0.751 is used.

[n fact, by supposing that the metamodels fit correctly the computer code, one deduces that all
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Indices Exact Joint GLM Joint GAM Simple GAM Gp
Values Values sd Method Values sd Method Values sd Method Values sd  Method

S1 0.314 0.314 4e-3 MC 0.325 5e-3 MC 0.333 6e-3 MC 0.328 Te-3 MC
So 0.442 0.318  b5e-3 MC 0.414  5e-3 MC 0.441  6e-3 MC 0.442  7e-3 MC
Sty 0.244 0.366 2e-3 MC 0.261 2e-3 MC 0.249 — Q2 0.257 — Q2
S19 0 0 — Eq 0 — Eq 0 — Eq 0.004 8e-3 MC
513 0.244 0 — Eq >0 — Eq —_ — — — — —
Sa3 0 0 — Eq 0 — Eq — — — e — —
S123 0 0 — Eq 0 — Eq — — — — — —
Sty 0.557 0.314 4e-3 Eq — — — — — — — —_ —
S, 0.443 0.318  5e-3 Eq 0.414  5e-3 Eq — — — — — —
Ss 0 0.366 2e-3 Eq — — — — - — — — e

TAB. 3.1 — Sobol sensitivity indices (with standard deviations) for the Ishigami function : exact
and estimated values from joint GLM, joint GAM, simple GAM and Gp model. “Method” indi-
cates the estimation method : MC for the Monte-Carlo procedure, Eq for a deduction from the
model equations and @, for the deduction of the predictivity coefficient ),. “—” indicates that
the value is not available.

the unexplained part of these metamodels is due to the uncontrollable parameter: S, = 1— Q5. This
is a strong hypothesis, which is verified here due to the simplicity of the analytical function. However,
it will not be satisfied for all application cases. Moreover in practical and complex situations, the @5
estimation (usually done by a cross-validation method) can be difficult and subject to caution. For
the Ishigami function, Sy, Sy, Sp, are correctly estimated. S, can be deduced from the formula (25)
for the simple GAM and estimated by Monte-Carlo method for the Gp model. However, any other
sensitivity indices can be proposed as no dispersion modeling is involved.

Remark : By using the Gp model including a nugget effect, one can think that estimating the nugget
effect would give an estimation of the total sensitivity index. In this example, the variance of the nugget
effect has been estimated to 10% of the total variance, which is far from the ezact value (24%). Other
tests (not presented here) have shown that it is difficult to have an optimization algorithm which gives
an efficient and robust estimation of the nugget effect.

In conclusion, this example shows that the joint models, and specially the joint GAM, can adjust
complex heteroscedastic situations for which classical metamodels are inadequate. Moreover, the
joint models offer a theoretical basis to compute efficiently global sensitivity indices of stochastic
models.

3.5.2 Application to an hydrogeologic transport code

This methodology is now applied to a complex industrial model of radioactive pollutants transport
in saturated porous media using the MARTHE computer code (developed by BRGM, France). In the
context of an environmental impact study, MARTHE has been applied to a model of strontium 90
(°°Sr) transport in saturated media for a radwaste temporary storage in Russia (Volkova et al. [31]).
Only a partial characterization of the site has been made and, consequently, values of the model
input parameters are not known precisely : 20 scalar input parameters have been considered as
random variables, each of them associated to a specified probability density function. The model
output variables of interest concern the %°Sr concentration values in different spatial locations. One
of the main goals of this study is to identify the most influential parameters of the computer code
in order to improve the characterization of the site in a judicious way. Because of large computing
times of the MARTHE code, the Sobol sensitivity indices are computed using metamodels (boosting
regression trees model for Volkova et al. [31] and Gaussian process model for Marrel et al. [15]).
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As a perspective of their work, Volkova et al. [31] propose to study more precisely the influence
of the spatial form of an hydrogeologic layer. It consists in performing a geostatistical simulation of
this layer (which is a two-dimensional spatial random field), before each calculation of the computer
model. This geostatistical simulation is rather complex and the resulting spatial field cannot be sum-
marized by a few scalar values. Therefore, as explained in our introduction, this hydrogeologic layer
form has to be considered as an uncontrollable parameter of the computer model. Additionally to the
uncontrollable parameter, 16 scalar input parameters remain uncertain and are treated as random
variables. It concerns the permeability of different geological layers, the longitudinal and transversal
dispersivity coefficients, the sorption coefficients, the porosity and meteoric water infiltration intensi-
ties.

The Latin Hypercube Sampling method is used to obtained a sample of 298 random vectors (each
of dimension 16). In addition, 298 independent realizations of the spatial random field (noticed by )
are obtained by a specific geostatistical simulation algorithm. This leads to obtain 298 observations
(after 8 days of calculations) of the output variable of the MARTHE model (°Sr concentration at the
domain center). For the GLMs and GAMs construction phase, the large data dispersion suggests
the use of logarithmic link functions for g and i (see Egs (1) and (2)). Due to the large number of
inputs, a manual term selection process has been applied. No interaction term has been found to be
explicative in the GLMs. However, a bi-dimensional spline term has been added in the GAMs because
of convincing deviance contribution and negligible p-value. One synthesizes the results by giving the
explained deviance and the explanatory terms involved in the formulas :

— Simple GLM : Deypl = 60% with the terms kd1, kd2, perl, per2.

— Joint GLM : Dgypj(mean) = 66.4%, with the same terms than the simple GLM, D gy (dispersion)

8.7% with the terms kdl and per3.

— Simple GAM : Dgyp| = 81.8% with s(kdl), s(kd2), s(per3), s(per2, kd2).

— Joint GAM : Dy (mean) = 98.1% with the same terms than the simple GAM, Dy, (dispersion)
29.7% with kd1, kd2.

— Gp model : the regression and covariance parts include the terms kdl, kd2, perl, per2, per3.
The nugget effect is estimated to 21.1% of the total variance, which shows that the Gp model
explains 79.9% of the total variance.

kdl, kd2 and perl, per2, per3 are respectively the sorption coefficients and the permeabilities of
the different hydrogeologic layers. One observes that the GAM models outperform the GLM ones.
The predictivity coefficient (computed by the leave-one-out method) of the simple GAM gives @, =
76.4%, while for the simple GLM Q4 = 58.8%. The Gp model is slightly more efficient than the simple
GAM (Q, = 80.4%). This small improvement may be due to a larger flexibility of Gps and to the
specific fitting procedure (Marrel et al. [15]), which is suited to large dimensional problems (16 input
parameters here).

Figure 3.4 shows the deviance residuals against the fitted values for the joint GLM, simple GAM
and joint GAM models. As for the Ishigami application, Gp model residuals cannot be compared to
these three models residuals. For the joint GLM approach, some outliers are not visible to keep the
figure readable. As a consequence, the GAMs clearly lead to smaller residuals. Moreover, the joint
GAM outperforms the simple GAM due to the right explanation of the dispersion component. It can be
seen that the joint GAM allows to suppress the bias involved by the heteroscedasticity, while simple
GAM residuals are affected by this bias. Figure 3.5 shows the observed values against the predicted
ones. This figure confirms the conclusions drawn from the Figure 3.4. Indeed, the GAM’s flexibility
allows to suppress the bias for the smallest data values.

Figure 3.6 shows the proportion A of observations that lie within the a% theoretical confidence
interval against the confidence interval «. It can be seen that the joint GAM is clearly the most
accurate model. Indeed, all its points are close to the theoretical y = z line, while the joint GLM
(resp. simple GAM) systematically leads to underestimations (resp. overestimations). Consequently,
from the Figures 3.4-3.6, one deduces that the joint GAM model is the most competitive one. On one
hand, the mean component is modeled accurately without any bias. On the other hand, the dispersion
component is competitively modeled leading to reliable confidence intervals.
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Fig. 3.5 — Observed response variable versus the predicted values for the three models : Joint
GLM, Simple GAM, Joint GAM (MARTHE application)

Table 3.5.2 gives the main Sobol sensitivity indices for the joint GLM, joint GAM, simple GAM
and Gp models (using 104 model computations for one index estimation). The Sobol indices of the
interactions between controllable parameters are not given (except between kd2 and per2) because
these interactions are not included in the formulas of the two joint models. Therefore, their Sobol
indices are zero. The two joint models give similar results for all first order sensitivity indices. The
sorption coefficient of the second layer kd2 explained more than 52% of the output variance, while
the permeability of the second layer per2 explained more than 5%. Some large differences arise in
the total influence of the uncontrollable parameter ¢ : 38.2% for the joint GLM and 27.7% for the joint
GAM. Moreover, the joint GLM shows an influence of the interaction between per3 and ¢, while the
joint GAM shows an influence of the interaction between kd2 and ¢. In this application, we consider
the joint GAM results more reliable than the joint GLM ones because the joint GAM captures more
efficiently the mean and dispersion components of the data than the joint GLM.

By comparing the joint GAM results with the simple GAM and Gp model results, some significant
differences can be printed out ;

~ The kd1 first order sensitivity index is overestimated using the simple GAM and Gp model

(14.0% and 12.6% instead of 3.7% for the joint GAM). Indeed, the deviance analysis of the joint
GAM dispersion component shows a high contribution of kd1, which means that the interaction
between kdl and the uncontrollable parameter is probably large. For a standard metamodel,
like the simple GAM and Gp models, this interaction is not found out and leads to a wrong
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Fig. 3.6 — Proportion A (in percent) of observation that lie within the o% theoretical confidence
interval in function of the confidence level o. MARTHE application.

estimation of the first order sensitivity index of kd1.

— For the simple metamodels, using the relation Sr(¢) = 1 — Q9, the total sensitivity index of
the uncontrollable parameter is underestimated : 23.5% (simple GAM) and 19.6% (Gp model)
instead of 27.7% (joint GAM). The classical metamodels tend to explain some parts of the data
which can be adequately included in the dispersion component of the joint GAM during the
iterative fitting algorithm.

— Contrary to the other metamodels, the joint GAM allows to prove that only £d1 and kd2 interact
with the uncontrollable parameter.

As a conclusion, these sensitivity analysis results will be very useful to the physicist or the mo-
deling engineer during the model construction and calibration steps. In this specific application, the
sensitivity analysis shows that the geometry of the second hydrogeological layer has a strong in-
fluence (up to 28%) on the predicted °°Sr concentration. Therefore, an accurate modeling of this
geometry, coupled with a better knowledge of the most influential parameter kd2, are the key steps
to an important reduction of the model prediction uncertainties.

3.6 CONCLUSION

This chapter proposes a solution to resolve the problem of uncertainty and sensitivity analyses on
stochastic computer models (Kleijnen [12]). A natural solution is to model the mean and the dispersion
of the code outputs by two explanatory models. The classical way is to separately build these models.
In this chapter, the use of the joint modeling is preferred. This theory, proposed by Pregibon [20] and
extensively developed by Nelder [17], is a powerful tool to fit the mean and dispersion components
simultaneously. Zabalza et al. [35] already applied this approach to model stochastic computer code.
However, the behavior of some numerical models can be highly complex and non linear. In the present
chapter, some examples show the limit of this parametric joint model. Being inspired by Rigby &
Stasinopoulos [23] who use non parametric joint additive models (restricted to Gaussian cases),
we propose to use more general models using GAMs. Like GLMs, GAMs are a suited framework
because it allows variable and model selections via quasi-likelihood function, classical statistical tests
on coefficients and graphical displays.

An analytic case on the Ishigami function shows that the joint GAM is adapted to complex heteros-
cedastic situations where classical response surfaces are inadequate. Moreover, it offers a theoretical
basis to compute Sobol sensitivity indices in an efficient way. The performance of the Joint GAM ap-
proach was assessed on an industrial application. Compared to other methods, the modeling of the
dispersion component allows to obtain a robust estimation of the total sensitivity index of the uncon-
trollable parameter, which leads to correct estimations of the first order indices of the controllable
parameters. In addition, it reveals the influential interactions between the uncontrollable parameter
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Indices Joint GLM Joint GAM Simple GAM Gp
Values sd Method Values sd Method Values sd Method Values sd M
S(kd1) 0.002  0.6e-2 MC 0.037  1.0e-2 MC 0.140  1.0e-2 MC 0.126  1.3e-2 ]
S (kd2) 0.522  0.6e-2 MC 0.524  1.0e-2 MC 0.550  1.le-2 MC 0.603  0.9e-2 )
S(perl) 0.018 0.7e-2 MC 0 — Eq 0 — Eq 0.012 1.1e-2 !
S(per2) 0.052 0.6e-2 MC 0.078 1.0e-2 MC 0.044 1.0e-2 MC 0.048 1.2e-2 1
S{per3) 0 . Eq 0.005 1.0e-2 MC 0.008 1.0e-2 MC 0.003 1.1e-2 ]
S(kd2,per2) 0 — Eq 0.063 1.0e-2 MC 0.026 1.0e-2 MC 0.021 1.4e-2 )
St (e) 0.382 0.2e-2 MC 0.277 0.3e-2 MC 0.235 — Q2 0.196 —
S(kdl,e) >0 — Eq >0 — Eq — — — — —
S(kd2,e) 0 — Eq >0 — Eq — — — —
S(perl,e) 0 — Eq 0 — Eq — — — —
S(per2,e) 0 — Eq 0 — Eq — e — e
S(per3,e) >0 — Eq 0 — Eq — — — —

TAB. 3.2 — Estimated Sobol sensitivity indices (with standard deviations obtained by 100 repe-
titions) for the MARTHE code. “Method” indicates the estimation method : MC for the Monte-
Carlo procedure, Eq for a deduction from the model equations and (), for the deduction of the
predictivity coefficient (). “—” indicates that the value is not available.

and the other input parameters.

The joint GAM has proven its flexibility to fit complex data : we have obtained the same perfor-
mance for its mean component as the powerful Gaussian process model. Moreover, the analytical
formulas available with the joint GAM are very useful to complete the sensitivity analysis results and
to improve our model understanding and knowledge. Finally, the joint GAM can also serve in propaga-
tion uncertainty and reliability studies of complex models, with unquantifiable random input variables,
to obtain some mean predictions with their confidence intervals.

For some applications, joint GAM could be inadequate, and other models can be proposed. For
example, for Gaussian observations, Juutilainen & Roning [11] have used a neural network model for
mean and dispersion. It is shown to be more efficient than joint GLM and joint additive models in a
context of numerous explanatory variables (25) and of a large amount of data (100000). Moreover, in
the joint GAM as in the joint GLM, only diagnosis tools to analyze separately the two components
of the joint model are available. It would be very convenient in the future to have accurate tools to
analyse the two components simultaneously.

In the whole, all statistical analysis were performed using the R software environment [21]. In
particular, the following functions and packages were useful : the “gim” function to fit a simple GLM,
the “mgev” (Multiple Smoothing Parameter Estimation by GCV) package to fit a simple GAM, and the
“sensitivity” package to compute Sobol indices. We also developed the “JointModeling” package to fit
joint models (including joint GLM and joint GAM).
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4 GLOBAL SENSITIVITY ANALYSIS OF COMPUTER MODELS WITH
FUNCTIONAL INPUTS

4.1 ABSTRACT

Global sensitivity analysis is used to quantify the influence of uncertain input parameters on the
response variability of a numerical model. The common quantitative methods are applicable to com-
puter codes with scalar input variables. This chapter aims at illustrating different variance-based
sensitivity analysis techniques, based on the so-called Sobol indices, when some input variables are
functional, such as stochastic processes or random spatial fields. In this work, we focus on large cpu
time computer codes which need a preliminary metamodeling step before performing the sensitivity
analysis. We propose the use of the joint modeling approach, i.e., modeling simultaneously the mean
and the dispersion of the code outputs using two interlinked Generalized Linear Models (GLM) or
Generalized Additive Models (GAM). The “mean” model allows to estimate the sensitivity indices of
each scalar input variables, while the “dispersion” model allows to derive the total sensitivity index of
the functional input variables. The proposed approach is compared to some classical SA methodolo-
gies on an analytical function. Lastly, the proposed methodology is applied to an industrial computer
code that simulates the nuclear fuel irradiation.

4.2 INTRODUCTION

Modern computer codes that simulate physical phenomenas often take as inputs a high number
of numerical parameters and physical variables, and return several outputs - scalars or functions. For
the development and the use of such computer models, Sensitivity Analysis (SA) is an invaluable
tool. The original technique, based on the derivative computations of the model outputs with respect
to the model inputs, suffers from strong limitations for most of computer models. More recent global
SA techniques take into account all the variation ranges of the inputs and aim to apportion the whole
output uncertainty to the input factor uncertainties (Saltelli et al. [18]). The global SA methods can
also be used for model calibration, model validation, decision making process, i.e., any process where
it is useful to know which variables that mostly contribute to the output variability.

The common quantitative methods are applicable to computer codes with scalar input variables.
For example, in the nuclear engineering domain, global SA tools have been applied to numerous mo-
dels where all the uncertain input parameters are modeled by random variables, possibly correlated
- such as thermal-hydraulic system codes (Marqueés et al. [12]), waste storage safety studies (Helton
et al. [6]), environmental model of dose calculations (looss et al. [9]), reactor dosimetry processes
(Jacques et al. [10]). Recent research papers have tried to consider more complex input variables in
the global SA process, especially in petroleum and environmental studies :

— Tarantola et al. [23] work on an environmental assessment on soil models which use spatially
distributed maps affected by random errors. For the SA, they propose to replace the spatial
input by a “trigger” parameter that governs the random field simulation;

— Ruffo et al. [15] evaluate an oil reservoir production using a model that depends on different
heterogeneous geological media scenarios. These scenarios, which are of limited number, are
then substituted for a discrete factor (a scenario number) before performing the SA;

— looss et al. [8] (see chapter 3) study a groundwater radionuclide migration model which is based
on geostatistical simulations of the hydrogeological layer heterogeneity. The authors propose
to consider the spatial input parameter as an “uncontrollable” parameter.

In this chapter, we tackle the problem of the global SA for numerical models and when some input
parameters ¢ are functional. e(u) is a one or multi-dimensional stochastic function where u can be
spatial coordinates, time scale or any other physical parameters. Our work focuses in models that
depend on scalar parameter vector X and need some stochastic processes simulations or random
fields (u) as input parameters. The computer code output value Y depends on the realizations of
these random functions. These models are typically non linear with strong interactions between input
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parameters. Therefore, we concentrate our methodology on the variance based sensitivity indices
estimation ; that is, the so-called Sobol indices (Sobol [22], Saltelli et al. [18]).

To deal with this situation, a first natural approach consists in the discretization of the input func-
tional parameter e(u) or its decomposition into an appropriate basis of orthogonal functions. Then,
for all the new scalar parameters which represent (u), sensitivity indices are computed. However,
in the case of complex functional parameters, this approach seems to be rapidly intractable as these
parameters cannot be represented by a small number of scalar parameters (Tarantola et al. [23]). Mo-
reover, when dealing with non physical parameters (for example coefficients of orthogonal functions
used in the decomposition), sensitivity indices interpretation may be labored. Indeed, most often,
physicists would prefer to obtain one global sensitivity index related to e(u).

The following section presents three different strategies to compute the Sobol indices with functio-
nal inputs : (a) the macroparameter method, (b) the trigger parameter method and (c) the proposed
joint modeling approach. Section 4.4 compares the relevance of these three strategies an analyti-
cal function : the WN-Ishigami function. Then, the proposed approach is illustrated on an industrial
computer code simulating fuel irradiation in a nuclear reactor.

4.3 COMPUTATIONAL METHODS OF SOBOL INDICES

First, let us recall some basic notions about Sobol indices. Let define the model

f R R
(1)
X Y = f(X)
where Y is the code output, X = (Xy,...,X,) are p independentinputs, and f is the model function,

which is analytically not known. The main idea of the variance-based SA methods is to evaluate how
the variance of an input or a group of input parameters contributes to the output variance. These
contributions are described using the following sensitivity indices :

| VarE(Y[X)]  _ Var[E(Y]XX)]
T Varly) 7Y Var(Y')

These coefficients, namely the Sobol indices, can be used for any complex model functions f. The
second order index S;; expresses the model sensitivity to the interaction between the variables X; and
X (without the first order effects of X; and X;), and so on for higher orders effects. The interpretation
of these indices is natural as all indices lie in [0, 1] and their sums are equal to one. The larger an
index value is, the greater is the importance of the variable or the group of variables related to this
index.

For a model with p inputs, the number of Sobol indices is 27 — 1; leading to an intractable number
of indices as p increases. Thus, to express the overall output sensitivity to an input X;, Homma &
Saltelli [7] introduce the total sensitivity index :

STi:Si+ZSij+ Z Sijk+---:ZSl (3)

JFi J#L kAL <k ledti

where #i represents all the “non-ordered” subsets of indices containing index i. Thus, >~ 4, S is
the sum of all the sensitivity indices having 7 in their index. The estimation of these indices (Egs.
(2) and (3)) can be performed by Monte-Carlo simulations based on independent samples (Sobol
[21], Saltelli [17]), or by refined sampling designs introduced to reduce the number of required model
evaluations significantly, for instance FAST (Saltelli et al. [20]) and quasi-random designs (Saltelli et
al. [19]).

Let us now consider a supplementary input parameter which is a functional input variable e(u) € R
where u ¢ R? is a d-dimensional location vector. £(u) is defined by all its marginal and joint probability
distributions. In this work, it is supposed that random function realizations can be simulated. For
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example, these realizations can be produced using geostatistical simulations (Lantuéjoul [11]) or
stochastic processes simulations (Gentle [4]). Our model writes now

Y = f(X,¢) (4)

and in addition to the Sobol indices related to X, our goal is to derive methods to compute the
sensitivity indices relative to ¢, i.e., S, (first order index), St. (total sensitivity index), S;. (second order
indices), Sije, ...

4.3.1 The macroparameter method

To solve the problem of correlated input parameters in the Sobol indices calculations, Jacques et
al. [10] propose the use of multi-dimensional sensitivity indices (Sobol [22]) : each group of corre-
lated parameters is considered as a multi-dimensional parameter or macroparameter. The different
Sobol indices (first order, second order, ..., total) are then computed using independent Monte-Carlo
sampling techniques (Sobol [21], Saltelli [17]). These techniques allow correlations between input
parameters ; while it is prohibited with other methods - for example FAST.

In our context, this approach seems to be relevant as the input functional parameter ¢(u) can be
considered as an unique input multi-dimensional parameter (i.e. a macroparameter). For instance,
the first order Sobol index related to £(w) is defined as previously by

~ Var[E (Yle)]

A simple way to estimate S. = D. /D is based on the Sobol [21] algorithm :

fo = N Z F(xP e (62)
D= Z X en) = f5 (65)
De = % Zf (X e f(XP er) - f2 (6¢)

where (XECI))IC:L..N and (XE&,Q));C:LHN are two independent sets of N simulations of the input vector X
and (ex)g=1..v is a sample of N realizations of the random function e(u). To compute the sensitivity
indices S;, the same algorithm is used with two independent samples of (¢;)x—1. . In the same way,
the total sensitivity index S, is derived from the algorithm of Saltelli [17].

The major drawback of this method is that it may be cpu time consuming. An accurate estimation
of Sobol indices by this naive Monte-Carlo method requires more than thousand model evaluations
for one input parameter. In complex industrial applications, it is intractable due to the cpu time cost of
one model evaluation and the possible large number of input parameters.

4.3.2 The “trigger” parameter method

Dealing with spatially distributed input variables, Tarantola et al. [23] propose an alternative that
uses an additional scalar input parameter ¢ - called “trigger” parameter. £ ~ U|0, 1] governs the
random function simulation. For each simulation, if £ < 0.5, the functional parameter e(u) is fixed to a
nominal value gq(u) (for example the mean FEle(u)]), while if £ > 0.5, the functional parameter ¢(u) is
simulated. Using this methodology, it is possible to estimate how sensitive the model output is to the
presence of the random function. Tarantola et al. [23] use the Extended FAST method to compute the
first order and total sensitivity indices of 6 scalar input factors and 2 additional “trigger’ parameters.
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For their study, the sensitivity indices according to the “trigger” parameters are small and the authors
conclude that it is unnecessary to model these spatial errors more accurately.

Contrary to the previous method, there is no restriction about the sensitivity indices estimation
procedure - i.e. Monte-Carlo, FAST, quasi Monte-Carlo. However, there are two major drawbacks for
this approach :

— As the macroparameter method, it also requires the use of the computer model to perform
the SA and it may be problematic for large cpu time computer models. This problem can be
compensate by the use of an efficient quasi Monte-Carlo algorithm.

— As underlined by Tarantola et al. [23], ¢ reflects only the presence or the absence of the sto-
chastic errors on go(u). Therefore, the term Var[E(Y'|¢)] does not quantify the contribution of
the random function variability to the output variability Var(Y"). We will discuss about the signi-
ficance of Var[[E(Y'|¢)] later, during our analytical function application.

4.3.3 The joint modeling approach

To perform a variance-based SA for time consuming computer models, some authors propose to
approximate the computer code by a mathematical function (Marseguerra et al. [13], Volkova et al.
[24]), often called response surface or metamodel (Fang et al. [2]). For metamodels with sufficient
prediction capabilities, the bias due to the use of the metamodel instead of the true model is negli-
gible. Several choices of metamodel can be found in the literature : polynomials, splines, Gaussian
processes, neural networks, ... Thus, for the functional input problem, one strategy may be to fit a
metamodel with a multi-dimensional scalar parameters representing £(«) as an input parameter - i.e.
its discretization or its decomposition into an appropriate basis. However, this approach seems to be
impracticable due to the potential large number of scalar parameters.

A second option is to substitute each random function realization for a discrete number, which
can correspond to the scenario parameter of Ruffo et al. [15] (where the number of geostatistical
realizations is finite and fixed, and where each different value of the discrete parameter corresponds
to a different realization). However, in the general context, this restriction of the possible realizations
of the input random function to a few ones is not acceptable.

The last solution considers (u) as an uncontrollable parameter and a metamodel is fitted in
function of the other scalar parameters X :

Y =E(Y|X) (7)
Therefore, using the relation
Var(Y) = Var[E(Y|X)] + E[Var(Y| X)) (8)

it can be easily shown that the sensitivity indices of Y according to the scalar parameters
X = (X, )i=1.p write (looss et al. [8])

_ Var[E(Y:,] X;)]

S . Var[E(Ym|X1X])]
YT Var(y) - B

Var(Y)

Sij Si—Sj, (9)
and can be computed by classical Monte-Carlo techniques applied on the metamodel Y,,,. Therefore,
using equation (8), the total sensitivity index of Y according to ¢(u) corresponds to the expectation of
the unexplained part of Var(Y') by the metamodel Y5, :

Sy = E[Var(Y|X)]

¢ Var(Y) (10)

Using this approach, our objective is altered because we cannot decompose the ¢ effects into ele-
mentary effect (S.) and interaction effects between ¢ and the scalar parameters (X;);—1. ,. However,
we see below that our technique allows a qualitative appraisal of the interaction indices.

The sensitivity index estimations from equations (9) and (10) raise two difficulties :
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1. It is well known that classical parametric metamodels (based on least squares fitting) are not
adapted to estimate E(Y|X) accurately due to the presence of heteroscedasticity (induced by
the effect of £). Such cases are analyzed by looss et al. [8] (see chapter 3). The authors show
that heteroscedasticity may lead to sensitivity indices misspecifications.

2. Classical non parametric methods, such as Generalized Additive Model (Hastie and Tibshirani
[5]) and Gaussian process (Sacks et al. [16]) which can provide efficient estimation of E(Y|X)
(examples are given in looss et al. [8]), even in high dimensional input cases (p > 5), are based
on homoscedasticity hypothesis and do not propose the estimation of Var(Y|X).

To solve the second problem, Zabalza-Mezghani et al. [26] propose the use of a theory developed
for experimental data (McCullagh and Nelder [14]) : the simultaneous fitting of the mean and the
dispersion by two interlinked Generalized Linear Models (GLM), which is called the joint modeling.
Besides, to resolve the first problem, this approach has been extended by looss et al. [8] (see chapter
3) to non parametric models. This generalization allows more complexity and flexibility while fitting
the data. The authors propose the use of Generalized Additive Models (GAMs) based on penalized
smoothing splines (Wood [25]). GAMs allow model and variable selections using quasi-likelihood
function, statistical tests on coefficients and graphical display. However, compared to other complex
metamodels, GAMs impose an additive effects hypothesis. Therefore, two metamodels are obtained :
one for the mean componentY,, = FE(Y|X); and the other one for the dispersion component Y, =
Var(Y| X). The sensitivity indices of X are computed using Y, with the standard procedure (Eq. (9)),
while the total sensitivity index of (u) is computed from FE(Y;) (Eq. (10)). Using the explicit formula
on Y, and the associated regression diagnostics, qualitative sensitivity indices for the interactions
between ¢(u) and the scalar parameters of X can also be deduced.

4.4 APPLICATION TO AN ANALYTICAL EXAMPLE

The three previously proposed methods are first illustrated on an artificial analytical model with
two scalar input variables and one functional input :

Y = f(X1, Xo,e(t)) = sin(X;) + 7sin(X)? + O.I[m?x(s(t))]‘l sin(X71) (11)

where X; ~ U[—m;n] for i = 1,2 and ¢(t) is a white noise, i.e. an i.i.d. stochastic process ¢(t) ~
N(0,1). In our model simulations, £(¢) is discretized in one hundred values : ¢t = 1...100. The function
(11) is similar to the well-known Ishigami function (Homma and Saltelli [7]) but substitute the third
parameter for the maximum of a stochastic process. Consequently, we call our function the white-
noise Ishigami function (WN-Ishigami). Although the WN-Ishigami function is an artificial model, the
introduction of the maximum of a stochastic process inside a model is quite realistic. For example,
some computer models simulating physical phenomena can use the maximum of time-dependent
variable - river height, rainfall quantity, temperature. Such input variable can be modeled by a temporal
stochastic process.
As for the Ishigami function, we can immediately deduce from the formula (11) the sensitivity
indices which are worse zero :
Se = S19 = S2¢ = S12: =0 (12)

Then, we have
STl - 51 “J(‘ Sls, STZ - 52) STg = Sl€ (13)

In the following, we focus our attention on the estimation of Sy, Sy and S, .

Because of a particularly complex probability distribution of the maximum of a white noise, there
is no analytical solution for the theoretical Sobol indices S, Sy and Sy, for the WN-Ishigami function.
Even with the asymptotic hypothesis (number of time steps tending to infinity), where the maximum of
the white noise follows Generalized Extreme Value distribution, theoretical indices are unreachable.
Therefore, our benchmark Sobol indices values are derived from the Monte-Carlo method. However,
these benchmark values can be considered as relevant because of the negligible computation time
required to evaluate equation (11).
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Macroparameter “Trigger” parameter
Indices Sobol algo Saltelli algo Sobol algo Saltelli algo
Values sd Values sd Values sd Values sd

S1 0.540 1.3e-2 0.551  1.6e-2 0.304 1.3e-2 0.330  1.8e-2
Sty — — 0.808  2.0e-2 — — 0.656  1.4e-2

So 0.197 1.1le-2 0.207 0.8e-2 0.329 1.4e-2 0.348 1.5e-2

ST, — — 0.212  0.7e-3 — — 0.532  1.3e-2
S1e 0.268 2.4e-2 — — 0.177  2.2e-2 —
S, — — 0.248 1.3e-2 — — 0.336  1.4e-2

TAB. 4.1 — Sobol sensitivity indices (with standard deviations sd) obtained from two Monte-
Carlo algorithms (Sobol [21] and Saltelli [17]) and two integration methods of the functional
input ¢ (macroparameter and “trigger” parameter) on the WN-Ishigami function. “—” indicates
that the value is not available.

4.4.1 The macroparameter and “trigger” parameter methods

Table 4.1 contains the Sobol indices estimates using the macroparameter and “trigger” parameter
methods. As explained before, we can only use the two algorithms based on independent Monte-
Carlo samples : the algorithm of Sobol [21] which computes S, S2, S1e, and the algorithm of Saltelli
[17] which computes the first order indices 51, Sy and the total sensitivity indices S, Sr,, ST.. For
the estimation, the size of the Monte-Carlo samples are limited to N = 10000 because of memory
computer limit. Indeed, the functional input (u) contains for each simulation set 100 values. Then, the
input sample matrix has the dimension N x 102 which becomes extremely large when NN increases. To
evaluate the effect of this limited Monte-Carlo sample size NV, each Sobol index estimate is associated
to a standard-deviation estimated by bootstrap - with 100 replicates of the input-output sample. The
obtained standard-deviations are relatively small, of the order of 0.01, which is rather sufficient for our
exercise. '

For the macroparameter method, the theoretical relations between indices given in (13) are ve-
rified. We are therefore confident with the estimates obtained with this method (which is in addition
theoretically well-founded) and we choose the Sobol indices obtained with Saltelli’s algorithm as the
indices references :

S1=55.1%, Sp=20.7%, Sr. =248%

The S¢, S12, Se2 and Sig. indices (Eq. (12)) are not reported in table 4.1 as estimates are negligible.

With the “trigger” parameter method, the obtained values in table 4.1 are not close to the reference
values. The inadequacies are larger than 30% for all the indices, and can be larger than 60% for a
few ones (S, and St,). Moreover, the relations given in (13) are not satisfied at all. Actually, replacing
the input parameter e(u) by £ which governs the presence or the absence of the functional input
parameter changes the model. When ¢ is not simulated, it is replaced by its mean (zero) and the WN-
Ishigami function becomes Y = sin(X1) + 7sin(X2)?2. Therefore, the mix of the WN-Ishigami model
and this new model perturbs the estimation of the sensitivity indices, even those unrelated to ¢ (like
Xo).

This example confirms our expectation : the sensitivity indices derived from the “trigger” parameter
method have not the same sense that the classical ones, i.e., the measure of the contribution of the




cd

NT CEA/DEN/CAD/DER/SESI/LCFR/NT DO 4  06/03/08 0 41/50

NATURE CHRONO UNITE INDICE PAGE

input parameter variability to the output variable variability. The sensitivity indices obtained with these
two methods are unconnected because the “trigger” parameter method changes the structure of the
model.

4.4.2 The joint modeling approach

We apply now the joint modeling approach which requires an initial input-output sample to fit
the joint metamodel - the mean component Y,,, and the dispersion component Y. For our applica-
tion, a learning sample size of n = 500 was considered; i.e., n independent random samples of
(X1, X2,e(u)) were simulated leading to n observations for Y. Let first remark that this method is
extremely less cpu time consuming than the previous ones which needed a 10000-size sample.

Joint GLM and joint GAM fitting procedures are fully described in looss et al. [8] (see chapter 3).
Some graphical residual analyses are particularly well suited to check the relevance of the mean and
dispersion components of the joint models. In the following, we give the results of the joint models
fitting on a learning sample (X1, X2, c(u),Y). Let us recall that we fit a model to predict Y in function
of (;Xfl,_)(g).

Joint GLM fitting
For the joint GLM, fourth order polynomial for the parametric form of the model is considered. Moreo-
ver, only the explanatory terms are retained in our regression model using analysis of deviance and
the Fisher statistics. The Student test on the regression coefficients and residuals graphical analysis
make it possible to appreciate the model goodness-of-fit. The mean component gives :

Deviance Residuals:
Min 1Q Median 3Q Max
-5.79193 -0.59880 0.03988 0.64202 3.51148

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 1.92634 0.22128 8.706 <2e-16 *%*
X1 4.74256 0.16198 29.278 <2e~16 **¥x*
I(X2°2) 2.22879 0.14130 15.773 <2e-16 *%x*
I(X1°3) ~-0.51398 0.02453 -20.951 <2e-16 **x
1(X274) -0.28501 0.01588 ~-17.952 <2e-16 **x%

Signif. codes: O ’#x%x’ 0.001 ’**’ 0.01 ’*’ 0.06 ’.” 0.1 * ’ 1
(Dispersion parameter for quasi family taken to be 1.010101)

Null deviance: 1901.0 on 499 degrees of freedom
Residual deviance: 6500.0 on 495 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 2

The explained deviance of this model is D.,,; = 74%. It can be seen that it remains 26% of
non explained deviance due to the model inadequacy and/or to the functional input parameter. The
predictivity coefficient, i.e. coefficient of determination R? computed on a test sample, is Q, = 71%.
() is relatively coherent with the explained deviance.

For the dispersion component, using analysis of deviance techniques, none significant explana-
tory variable were found : the heteroscedastic character of the data has not been retrieved. Thus, the
dispersion component is supposed to be constant; and the joint GLM model is equivalent to a simple
GLM - but with a different fitting process.

Joint GAM fitting
At present, we try to model the data by joint GAM. The resulting model is described by the following
features (s(.) denotes a penalized spline smoothing term) :

Mean component:
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Family: quasi

Link function: identity
Formula:

y © X1+ s(X1) + s(X2)

Parametric coefficients:

Estimate Std. Error t value Pr(>[tl)
(Intercept) 4.19914 0.08727  48.12  <2e-16 *xx
X1 ~5.39131 0.34285 -15.72 <2e-16 #**

Signif. codes: 0 ’#%x’ 0,001 ’*x’ 0.01 ’%’ 0,06 ’.” 0.1 > * 1

Approximate significance of smooth terms:

edf Est.rank F p-value
s(X1) 5.503 8 144.1 <2e-16 **x*
s(X2) 8.738 9 316.5 <2e-16 **x*
Signif. codes: O ’*¥x’ 0.001 ’*x> 0.01 %’ 0.05 ’>.” 0.1’ ’ 1

R-sq.(adj) = 0.979 Deviance explained = 90.5%
GCV score = 1.0683  Scale est. = 1.0336 n = 500

Dispersion component:

Family: Gamma

Link function: log
Formula:

d "~ s(X1)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 0.98812 0.07965 12.41 <2e-16 *¥%

Signif. codes: O ’#¥x’ 0.001 ’#x’ 0,01 ’%”> 0.06 *.” 0.1 7 7 1

Approximate significance of smooth terms:

edf Est.rank F p-value
s(X1) 8.814 9 28.39 <2e-16 kxx
Signif. codes: O 7*¥%’ 0.001 ’#x’> 0.01 ’%’ 0.056 7.’ 0.1 > > 1

R-sq.(adj) = 0.0481 Deviance explained = 26.3%
GCV score = 3.,23b6  Scale est. = 3.172 n = 500

The explained deviance of the mean componentis D,,, = 90% and the predictivity coefficient is
Qs = 77%. Therefore, the joint GAM approach outperforms the joint GLM one. Indeed, the proportion
of explained deviance is clearly greater for the GAM model. Even if this is obviously related to an
increasing number of parameters; this is also explained as GAMs are more adjustable than GLMs.
This is confirmed by the increase of the predictivity coefficient - from 71% to 77%. Moreover, due
to the GAMs flexibility, the explanatory variable X is identified for the dispersion component. The
interaction between X; and the functional input parameter ¢(u) which governs the heteroscedasticity
of this model is therefore retrieved.

Sobol indices
From the joint GLM and the joint GAM, Sobol sensitivity indices can be computed using equations
(9) and (10) - see Table 4.2. The reference values are extracted from the macroparameter method
and Saltelli’'s algorithm in table 4.1. The standard deviation estimates (sd) are obtained from 100
repetitions of the Monte-Carlo estimation procedure - which uses N = 10000 model computations
for one index estimation. The joint GLM and joint GAM gives good estimations of S, and .Sy. Despite
the joint GLM leads to an accurate estimation for S, we will see later that it is a lucky break. A
problem occurs with the estimation of S7, with joint GAM. In fact, an efficient modeling of Var(V|X)
is difficult, which is a common statistical difficulty in heteroscedastic regression problems (Antoniadis
& Lavergne [1]). Another way to estimate the total sensitivity index Sz, is to compute the unexplained
variance of the mean component model given directly by 1 — Q9, with Q5 the predictivity coefficient
of the mean component model. In practical applications, @, can be estimated via leave-one-out or
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cross validation procedures. In our analytical case, the index estimated with this method and the joint
GAM gives a correct estimation - 0.23 instead of 0.25.

Indices Reference Joint GLM Joint GAM
Values Values sd  Method Values sd  Method
St 0.551 0.572  4e-3 MC 0.569  5e-3 MC
So 0.207 0.179  8e-3 MC 0.233  7e-3 MC
ST, 0.248 0.250 2e-3 MC 0.197 1e-3 MC
0.29 — Q2 0.23 — Qo
Sio 0 0 — Eq 0 — Eq
S1e 0.248 0 — Eq >0 — Eq
Soe 0 0 — Eq 0 — Eq
S12¢ 0 0 — Eq 0 — Eq
STy 0.808 0.832  4e-3 Eq . — —
ST, 0.212 0.179  8e-3 Eq 0.233  7e-3 Eq
Se 0 0.250  2e-3 Eq — — —

TAB. 4.2 — Sobol sensitivity indices (with standard deviations) for the WN-Ishigami function :
exact and estimated values from joint GLM and joint GAM (fitted with a 500-size sample). “Me-
thod” indicates the estimation method : MC for the Monte-Carlo procedure, Eq for a deduction
from the model equations and (), for the deduction of the predictivity coefficient (5. “—”
indicates that the value is not available.

For the other sensitivity indices, the conclusions draw from the GLM formula are completely erro-
neous : as the dispersion component is constant, the interaction indices are null. Thus, S, = Sy, =
0.25 while S. = 0 in reality. In contrary, the deductions draw from GAM formulas are correct : (X, ¢)
interaction sensitivity is positive, Soc = S0 = 0, S, = g, S19 = Ses = S193 = 0. The drawback
of this method is that some indices (S7, and S¢) remain unknown due to the non separability of the
dispersion component effects.

By estimating Sobol indices with those obtained from other learning samples, we observe that
the estimates are rather dispersed : it seems that the estimates are not robust according to different
learning samples for the joint models. To examine this effect, we propose to study two different sample
sizes (n = 200 and n = 500). For each sample size, we repeat 25 times, the fitting process on
different learning samples, and we compute Sobol indices as previously. In fact, for each sample
size, we obtain 25 estimates of each sensitivity index. The variability of the indices is due at present
to the learning sample variability. Figures 4.1 and 4.2 show the results of this investigation, which
are particularly convincing. The boxplots are based on the 25 different estimates. From these figures,
several conclusion can be drawn :

— for the joint GAM, the boxplot interquartile interval of each index contains its reference value. In
contrary, the joint GLM fails to obtain correct estimates : except for S1, the sensitivity reference
values are outside the interquartile intervals of the obtained boxplots ;

- the superiority of the joint GAM with respect to the joint GLM is corroborated, especially for S,
and ST, ;

— the increase of the learning sample size has no effect on the joint GLM results (due to the
parametric form of this model). However, for the joint GAM, boxplots widths are strongly reduced
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from n = 200 to n = 500. In addition, the mean estimates seem to converge to the reference
values;

— as explained before, the estimation of S7. using the predictivity coefficient Q)5 is markedly better
than through the dispersion component model. This is not the case for the joint GLM.

Learning size = 200
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Fig. 4.1 — WN-ishigami application. Comparison of Sobol indices estimates. Reference values :
Sy, S, STE- Joint GLM : Sy, Sor,, STSL» 1— Q. Joint GAM : S14,S04, STgAa 1—Qo4-1—Qor, (resp.
1 — Q24) is the estimation of S, via the joint GLM (resp. joint GAM) @, coefficient. Learning
sample size : n = 200.

In conclusion, this example shows that the joint models, and specially the joint GAM, can adjust
complex heteroscedastic situations. Moreover, the joint models offer a theoretical basis to compute
efficiently global sensitivity indices for models with functional input parameter.
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Fig. 4.2 — WN-Ishigami application. Comparison of Sobol indices estimates. Reference values :
5’1, Sy, STE- Joint GLM : Sir, SQL, STEL; 1— QQL. Joint GAM : SlA,SQA, STgAa 1-— QQA. 1-— QQL (resp.
1 — Qq4) is the estimation of S7. via the joint GLM (resp. joint GAM) @, coefficient. Learning
sample size : n = 500.
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4.5 APPLICATION TO A NUCLEAR FUEL IRRADIATION SIMULATION

The METEOR computer code, developed within the Fuel Studies Department in CEA Cadarache,
studies the thermo-mechanical behavior of the fuel rods under irradiation in a nuclear reactor core. In
particular, it computes the fission gas swelling and the cladding creep (Garcia et al. [3]). These two
output variables are considered in our analysis. These variables are of fundamental importance for
the physical understanding of the fuel behavior and for the monitoring of the nuclear reactor core.

Input parameters of such mechanical models can be evaluated either by database analyses,
arguments invoking simplifying hypotheses, expert judgment. All these considerations lead to assign
to each input parameter a nominal value associated with an uncertainty. In this study, six uncertain
input parameters are considered : the initial internal pressure X, the pellet and cladding radius
X5, X3, the microstructural fuel grain diameter X, the fuel porosity X5 and the time-dependent
irradiation power P(t). X1, ..., X5 are all modeled by Gaussian independent random variables with
the following coefficient of variations : cv(X1) = 0.019, cv(Xs) = 1.22 x 1073, cv(X3) = 1.05 x 107,
cv(X,) = 0.044, cv(X5) = 0.25. The last variable P(t) is a temporal function (discretized in 3558
values) and its uncertainty () is modelled like a stochastic process. For simplicity, a temporal white
noise (of uniform law ranging between —5% and +5%) was introduced.

As in the previous application, additionally to its scalar random variables, the model includes an
input functional variable P(t). To compute Sobol indices of this model, we have first tried to use the
macroparameter method. We have succedeed to perform the calculations with N = 1000 (for the
Monte-Carlo sample sizes of Egs. (6a), (6b) and (6¢)). The sensitivity indices estimates have been
obtained after 10 computation days and were extremely imprecise, with strong variations between
0 and 1. Because of the required cpu time, an increase of the sample size IV to obtain acceptable
sensitivity estimates was unconceivable. Therefore, the goal of this section is to show how the use of
the joint modeling approach allows to estimate the sensitivity indices of the METEOR model and, in
particular, to quantify the functional input variable influence.

500 METEOR calculations were carried out using 500 Monte-Carlo sampling of the input para-
meters. As expected, the white noise on P(t) generates an increase in the standard deviation of the
output variables (compared to simulations without a white noise) : 6% increase for the variable fission
gas swelling and 60% for the variable cladding creep.

4.5.1 Gas swelling

We start by studying the gas swelling model output. With a joint GLM, the following result for Y5,
and Y, were obtained :
Y. = —T76 —0.4X; +20Xy +8X, + 134X5 + 002XZ —2X9 Xy —6X4 X5 (14)
log(Yy) =—2.4X;

The explained deviance of the mean componentis D, = 86%. As the residual analyses of mean
and dispersion components do not show any biases, the resulting model seems satisfactory. The
joint GAM was also fitted on these data and led to similar resuits. Thus, it seems that spline terms
are useless and that a joint GLM model is suited.

Table 4.3 shows the results for the Sobol indices estimation using Monte-Carlo methods applied
on the metamodel (14). The standard deviation (sd) estimates are obtained from 100 repetitions of the
Monte-Carlo estimation procedure -which uses 10° model computations for one index estimation. It is
useless to perform the Monte-Carlo estimation for some indices because they can be deduced from
the joint model equations. For example, S3 = 0 (resp. S.2 = 0) because X3 (res. Xs) is not involved
in the mean (resp. dispersion) component in equation (14). Moreover, we know that 5.1 > 0 because
X1 is an explanatory variable inside the dispersion component Y,;. However, this formulation does not
allow to have any idea about S, which reflects the first order effect of . Therefore, some indices are
not accessible, such as S, and S,; non distinguishable inside the total sensitivity index S.. Finally,
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5 5
we can check that Z Si + Z Si; + St. = 1 holds - up to numerical approximations.
i=1 ij=1,i<j

It can be seen that X, (g]rain diameter) and X5 (fuel porosity) are the most influent factors (each
one having 40% of influence), and do not interact with the irradiation power P(t) (representing by
its uncertainty ¢). In addition, the effect of P(¢) is not negligible (14%) and parameter X (internal
pressure) acts only with its interaction with P(t). A sensitivity analysis by fixing X, could allow us to
obtain some information about the first order effect of € in the model.

4.5.2 Cladding creep

We study now the cladding creep model output. With a joint GLM, the model for Y, and Yy is :

(15)

Yon = —2.75 + 1.05X3 — 0.15X3 — 0.58 X5
log(Yy) = 156052 — 76184X + 9298 X7

The explained deviance of the mean component is D.,, = 26%. As the residual analyses of mean
and dispersion components show some biases, the resulting model is not satisfactory.

For the joint GAM, the spline terms {s(X3), s(X3), s(X5)} and s(X3) are added within the mean
component and the dispersion component respectively. The explained deviance of the mean com-
ponentis D.,, = 29% which is not significantly greater than 26%. However, as the mean component
residual biases of the joint GAM are smaller than those observed for the joint GLM, the joint GAM
seems to be more relevant than the joint GLM.

Table 4.3 shows the Sobol indices estimates using Monte-Carlo methods and deductions from the

5 5
joint model equations. For the joint GLM and joint GAM of the cladding creep, Z Si + Z Sij +
=1 44=1,i<j

S7. = 1 holds — up to numerical imprecisions. Due to the proximity of the two joint moélels, results
are similar. This analysis shows that the parameter Xy (pellet radius) explains 28% of the uncertainty
of the cladding creep phenomenon, while the other scalar parameters have negligible influence. The
greater part of the cladding creep variance (70%) is explained by the irradiation power uncertainty.
Physicists may be interested in quantifying the interaction influence between the pellet radius and the
irradiation power. Unfortunately, this interaction is not available for the moment in our analysis.
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Gas swelling

Cladding creep

Indices Joint GLM Joint GLM Joint GAM
Values  sd  Method Values sd  Method Values sd  Method
S1 0.029  6e-3 MC 0.000 1e-3 MC 0.000  1le-3 MC
S 0.024  5e-3 MC 0.294 le4 MC 0.282 2e-4 MC
S 0 — Eq 0.006 1e-3 MC 0.007 1le-3 MC
Sy 0.394  5e-3 MC 0.000 1e-3 MC 0.000 1le-3 MC
S 0.409  6Ge-3 MC 0.006 1e-3 MC 0.006 1le-3 MC
Sy 0.002  5e-3 MC 0 — Eq 0 — Eq
Sus 0.000  9e-3 MC 0 — Eq 0 — Eq
other S;; 0 — Eq 0 — Eq 0 — Eq
St 0.143  le4 MC 0.694 le-4 MC 0.704  3e-4 MC
Se — — — . — — — o —
Set e e — 0 e Eq 0 — Eq
Seo 0 — Eq e — —— - —
other S; 0 — Eq 0 — Eq 0 — Eq
Sty — — — 0.000 1e-3 Eq 0.000  4e-3 Eq
ST, 0.026  7e-3 Eq — — — e e
Sty 0 — FEq 0.006 1e-3 Eq 0.007 4e-3 Eq
ST, 0.396  7e-3 Eq 0.000 1e-3 Eq 0.000 4e-3 Eq
ST, 0.409 0.011 Eq 0.006 1e-3 Eq 0.006  4e-3 FEq

TAB. 4.3 — Sobol sensitivity indices (with standard deviations sd) from joint models fitted on
the outputs of the METEOR code. “Method” indicates the estimation method : MC for the
Monte-Carlo procedure and Eq for a deduction from the joint model equation. “—” indicates

that the value is not available.
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4.6 CONCLUSION

This chapter has proposed a solution to perform global sensitivity analysis for time consuming
computer models which depend on functional input parameters, such as a stochastic process or a
random field. Our purpose concerned the computation of variance-based importance measures of
the model output according the the uncertain input parameters. We have discussed a first natural
solution which consists in integrating the functional input parameter inside a macroparameter, and
using standard Monte-Carlo algorithms to compute sensitivity indices. This solution is not applicable
for time consuming computer code. We have discussed another solution, used in previous studies,
based on the replacement of the functional input parameter by a “trigger” parameter that governs
the integration or not of the functional input uncertainties. However, the estimated sensitivity indices
are strongly biased due to changes in the model structure carrying out by the method itself. Finally,
we have proposed an innovative solution, the joint modeling method, based on a preliminary step
of double (and joint) metamodel fitting, which resolves the large cpu time problem of Monte-Carlo
methods. It consists in rejecting the functional input parameters in noisy input variables. Then, two
metamodels depending only on the scalar random input variables are simultaneously fitted : one for
the mean function and one for the dispersion (variance) function.

Tests on an analytical function have shown the relevance of the joint modeling method, which
provides all the sensitivity indices of the scalar input parameters and the total sensitivity index of the
functional input parameter. In addition, it reveals in a qualitative way the influential interactions bet-
ween the functional parameter and the scalar input parameters. A research way for the future would
be to distinguish the contributions of several functional input parameters, who are at the moment
totally mixed in one sensitivity index. This is the main drawback of the proposed method.

In an industrial application, the feasibility and usefulness of our methodology was established. In-
deed, other methods are not applicable in this application because of large cpu time of the computer
code. To a better understanding of the model behavior, the information brought by the global sensi-
tivity analysis can be very useful to the physicist or the modeling engineer. The joint model can aiso
serve in propagation uncertainty and reliability studies of complex models, containing input random
functions, to obtain some mean predictions with their confidence intervals.
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