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Foreword 

The work presented in this report was developed within the Integrated Project PAMINA: 
Performance Assessment Methodologies IN Application to Guide the Development of 
the Safety Case. This project is part of the Sixth Framework Programme of the 
European Commission. It brings together 25 organisations from ten European 
countries and one EC Joint Research Centre in order to improve and harmonise 
methodologies and tools for demonstrating the safety of deep geological disposal of 
long-lived radioactive waste for different waste types, repository designs and geological 
environments. The results will be of interest to national waste management 
organisations, regulators and lay stakeholders. 

The work is organised in four Research and Technology Development Components 
(RTDCs) and one additional component dealing with knowledge management and 
dissemination of knowledge: 

In RTDC 1 the aim is to evaluate the state of the art of methodologies and approaches 
needed for assessing the safety of deep geological disposal, on the basis of 
comprehensive review of international practice. This work includes the identification of 
any deficiencies in methods and tools.  

In RTDC 2 the aim is to establish a framework and methodology for the treatment of 
uncertainty during PA and safety case development. Guidance on, and examples of, 
good practice will be provided on the communication and treatment of different types of 
uncertainty, spatial variability, the development of probabilistic safety assessment tools, 
and techniques for sensitivity and uncertainty analysis. 

In RTDC 3 the aim is to develop methodologies and tools for integrated PA for various 
geological disposal concepts. This work includes the development of PA scenarios, of 
the PA approach to gas migration processes, of the PA approach to radionuclide 
source term modelling, and of safety and performance indicators. 

In RTDC 4 the aim is to conduct several benchmark exercises on specific processes, in 
which quantitative comparisons are made between approaches that rely on simplifying 
assumptions and models, and those that rely on complex models that take into account 
a more complete process conceptualization in space and time. 

The work presented in this report was performed in the scope of RTDC 2. 

All PAMINA reports can be downloaded from http://www.ip-pamina.eu.  
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1. Introduction 

The process to develop a Performance Assessment of a nuclear High Level Waste 
repository (HLW) involves modelling the whole system, which classically is considered to be 
divided into three parts: i) The near field or engineered facilities including the disturbed part 
of the geosphere, ii) the far field or part of the geosphere that hosts the repository, and iii) the 
biosphere, eventual sink of radioactive pollutants. Modelling such a system means modelling 
the inventory of radionuclides, the processes that deteriorate the facility and that produce the 
release of radionuclides in the long term, their transport through the geosphere and their 
spread over the biosphere, which ultimately will produce doses on humans. All those models 
will be integrated as submodels of the system model. 

Moreover, implementers should be able to foresee potential disruptive scenarios that could 
induce ‘worse than expected’ behaviour of the system. This involves addressing events and 
processes that, though unlikely, could reasonably happen, and would produce more adverse 
consequences that the expected normal evolution of the system. Two activities are triggered 
when alternative scenarios are identified: Likelihood estimation and adapting the system 
model to the specific physical and chemical conditions produced by the scenario. 

Parameters such as coefficients, boundary and initial conditions of the differential equations 
used in the system model are usually affected by uncertainty. Characterising these 
uncertainties is an extremely time consuming task that includes laboratory and field 
experiments, collection of historical records, search in databases and use of expert 
judgment. Formally, as soon as scenarios are identified and their probabilities are estimated, 
the system model is available and parameter uncertainty is assessed, computations could be 
started to estimate the adverse consequences to humans and the environment in the future. 
Eventually, the sampled input data and the values of the output variables obtained via Monte 
Carlo simulation will be available. This enormous quantity of data may be used to 
characterize the uncertainty of output variables and to identify what input parameters 
contribute more to such uncertainty. 

The target of this report is to show a systematic way to present results produced in a PA 
study, which are typical elements of an Uncertainty Analysis (UA) and of a Sensitivity 
Analysis (SA). Its structure is as follows. Chapter 2 is dedicated to show the mathematical 
notation used along the whole report, chapter 3 is dedicated to recall potential output 
variables that deserve to be included, typically safety and performance indicators and related 
variables. Chapter 4 provides an overview of most useful numeric and graphic statistics 
available to characterise output variable uncertainty. Each statistic considered is described, 
showing main advantages and shortcomings. Some attention is also dedicated to the issue 
of selecting an appropriate sample size. Chapter 5 is dedicated to show a selection of a 
minimum set of SA tools that, in the opinion of the authors, should be used to analyse input-
output relations. Chapter 6 indicates the simple tasks needed to show the results of the 
statistics described in chapters 4 and 5 when applied to time-dependent output variables. 
Chapter 7 provides the actual template proposed, which is based on the previous chapters. 
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Chapter 8 is the actual application of the template to the dose rate due to 129I in the Spanish 
reference concept in granite. The peak dose rate due to 129I and the time to the peak are 
taken as non time-dependent output variables, while the dose rate due to 129I at all times and 
at 6 specific times are taken as time-dependent output variables. Chapter 9 gives the main 
conclusions of this report. After the references, three annexes provide some extensions 
about subjects mentioned in the main text, which could be of help to some readers. It is 
important to stress that the whole text has been written keeping in mind the idea that the data 
used in the PA are generated via Monte Carlo simulation, under non-biasing sampling 
schemes.  

Many examples of application of the different statistics described in this report are shown 
along the different sections. Prváková et al. (2008) has been the source of data for the 
examples. This reference (PAMINA milestone M4.3.2) reports the results of a benchmark 
study developed in a probabilistic framework to compare the results obtained with two 
models that simulate the behaviour of an Intermediate and Low-level waste (ILW) repository 
in indurated clay (argillite) in France. The output variables considered are the molar flows of 
three radionuclides (129I, 79Se and 94Nb) at six different surfaces. 24 input random parameters 
describe release rates of each waste component and hydraulic and transfer properties of 
each porous medium (permeability, diffusion, porosity, adsorption, solubility limit). This data 
set will be called ‘reference data set’ along the whole text, and the study itself will be called 
the ‘reference study’ or ‘reference problem’. 
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2. Notation 

Upper-case letters will be used along the whole text to denote random variables (or variates), 
while their realizations will be denoted by the corresponding lowercase letters. The letter X 
(x) will be associated with the input parameters and the letter Y (y) with the output. 

• rv: Random variable 

• X, Y : Random variables;  

• ( )1 2, ,..., nX X X : A random sample of random variable X;  

• ( )1 2, ,..., nx x x : The corresponding realization of the random sample;  

• ( )= 1 2X , ,..., dX X X : A random vector of size d; 

• Y=Y(X) : The output of the numerical model;  

• F : The cumulative distribution function (CDF): = ≤( ) ( )F x P X x ; 

• f : The probability density function (PDF) : 
−∞

= ∫( ) ( )
x

F x f t dt ; 

• IR: set of real numbers; 

• α α,x q : the α-quantile of X, defined as α α=( )F x ; 

• [ ]x : The largest integer smaller or equal to x; 

• ⎡ ⎤⎢ ⎥x : The smallest integer larger or equal to x; 

• ( )kX : Order statistics (of order k) ; 

• μ : Mean of a random variable; 

• σ 2 : Variance of a random variable; 

• x : Sample mean; 

• σ 2
x , 2s : Sample variance;σ x , s : sample standard deviation 

• E(.) : mathematical expectation 

• Var(.) : variance 

• iid : independent, identically distributed 

• #: Cardinal of a set 
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3. Potentially targeted output variables 

In a PA, a large variety of output variables is obtained as a result of the Monte Carlo 
simulation. Among them, the most important is the effective total dose rate over time, which 
is used in the regulation of many countries as the main measure of risk/safety associated to 
the repository. Consequently, safety limits are usually imposed on it. In addition to this 
fundamental output variable, other output variables are also relevant, either because they 
provide additional information about the system safety (alternative safety indicators), or 
because they provide measures of the system performance, or of the performance of some 
subsystem (performance indicators). The European Commission FP-5 research project SPIN 
(Becker et al., 2002) was dedicated to the identification and study of safety and performance 
indicators, in order to select the most appropriate set. 

In addition to the effective total dose rate, SPIN partners identified as relevant safety 
indicators the following two output variables: 

• The radiotoxicity concentration in biosphere water 

• The radiotoxicity flow1 from geosphere 

The effective total dose rate over time was considered very relevant at early times (first 
several thousand years), while the radiotoxicity concentration in biosphere water was 
considered most relevant at intermediate times (between several thousand years and several 
tens of thousand years) and the radiotoxicity flow from the geosphere at late times (hundreds 
of thousand years and beyond). 

The following types of output variables were identified as main performance indicators  

• Inventories in compartments 

• Inventories outside compartments 

• Flows getting out of compartments 

• Concentrations in compartment water 

• Transport time through compartments 

Among the three safety indicators and the five types of performance indicators selected, all 
but one type are time dependent variables; only the last one, the transport time through 
compartments, does not vary in each realization over time (only one value per realization). 
Statistics considered in chapter 4 are designed for non-time dependent variables; necessarily 
they will be adapted to show uncertainty evolution over time.  

                                                 
1 Consistently, in many works related to the area of radioactive waste repository PA, flows are called 
fluxes. In this report, the authors prefer to call flow to any quantity whose units are X·t-1, where X may 
be mass, volume, etc. Becker et al. (2002) use the expression ‘flux’ to name this safety indicator, 
which we replace by ‘flow’. 
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These output variables are the main candidates to be analysed; which of them will formally 
be analysed depends on the interest of the organisation developing the study. Nevertheless, 
other potential candidates can also be considered. For some of those outputs selected that 
are time dependent, it could be of interest to analyse also the following two output variables 
(non time-dependent) associated to them: their peaks and the times to the peaks. The peak 
of a variable takes one single value per realization (if more than one peak happens, the 
largest is taken as the peak) and provides an upper bound for that variable. For example, in 
the case of the effective total dose rate, if its peak fulfils the safety criteria, it will also fulfil 
them.  
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4. Statistics to characterise output uncertainty 

Descriptive statistics are used to characterise the uncertainty associated to random 
variables. Since typical output variables obtained in a PA via Mont Carlo simulation are 
random variables, common descriptive statistics are appropriate to characterise their 
uncertainty. The realizations of the rvs are generically denoted by ),...,,( 21 nxxx . Along the 

whole text the word statistic will design ‘a function of a sample where the function itself is 
independent of the sample's distribution; the term is used both for the function and for the 
value of the function on a given sample’. 

All the tools described in this section may be applied to results obtained via Monte Carlo 
simulation, under different possible sampling schemes with the only restriction of not biasing 
the sample. This includes Simple Random Sampling (SRS) and the following variance 
reduction techniques: Latin hypercube Sampling (LHS), Proportional Stratified Sampling, 
Control Variates and input space Dimension Reduction (either trivial or achieved via 
Dimensional Analysis). On the other hand, special biasing techniques such as importance 
sampling need special output data post-processing tasks which are not addressed in this 
report. Annex A provides a short summary about Monte Carlo simulation and the 
aforementioned variance reduction techniques. 

4.1 Numeric statistics 

Numeric statistics characterise different properties of a random variable. Four types are 
considered in the following subsections: statistics of central tendency, statistics that 
characterise the full distribution of the variable, statistics of spread or dispersion and 
statistics that characterise specific aspects of the distribution shape. 

4.1.1 Central tendency statistics 

Measures of central tendency, or of location, compute one single number that gives the best 
possible representation of the value around which the data are located. Four statistics are 
the most used: mean, median, geometric mean and mode. 

The mean 

The most important measure of central tendency is the arithmetic mean of the sample, 
defined by: 

∑ =
=

n

i ixnx
1

1 .                           (4.1.1.1) 

 

Other notations: nx (whenever knowing the sample size is needed) and μ . 
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Important characteristics of the arithmetic mean: 

• It is a linear statistic in the following sense: for two samples x and y of the same size 

ybxabyax +=+  ( IRba ∈, ).  

• It is not a robust statistic; it is very sensitive to extreme values (see the example in 
page12). 

• It gives a very good measure of location for homogeneous symmetric sets of data. 
The variance (see section 4.1.3) is minimised when the mean is the measure of 
location used as a reference. 

• If the sample is heterogeneous (existence of data obtained under different 
conditions), the mean can become completely useless as a measure of central 
tendency (this problem affects all measures of central tendency); it could even take 
a value outside the range of definition of the variable under study. For instance a 
sample made of two subsamples of equal size that do not overlap at all, the 
arithmetic mean can be in between, just where the variable takes no value. This 
could be the case when combining the results obtained for two scenarios whose 
output values do not overlap. 

The arithmetic mean is the most important measure of central tendency because it is the 
best available estimator for the actual mean of any random variable. It is a statistic, thus it is 
a random variable itself, and it will take different values in different samples. For this, as for 
any of the other statistics described in this report, we know that the value obtained from a 
sample is not the same as the actual value that we want to estimate, but we expect that it will 
be close. Confidence intervals are the tools provided by classical inference methods to get 
an estimate of the error committed when estimating a given characteristic of a random 
variable with a given statistic (see annex B for a short review of classical inference methods 
and for a correct interpretation of a confidence interval).  

Nevertheless, exact confidence intervals are available only for input uncertain parameters of 
a very limited number of types of random variables. The output random variables that appear 
in a PA do not frequently fit well those types and do usually show not so good behaviour 
(highly skewed, high kurtosis). In case confidence intervals be needed, which is the case of a 
PA, when a measure of uncertainty about the estimates given is needed, asymptotic 
confidence intervals may be estimated, see annex B. Unfortunately, the problem of 
asymptotic confidence intervals is that we never know if the asymptotic conditions have been 
either achieved or not, so the actual confidence level is never known (i.e. we could provide a 
60% confidence interval when we actually think it is a 95% confidence interval). That is why 
the authors of this report are not in favour of providing confidence intervals for the means of 
output variables. When output variables fit reasonably well standard probability models, 
which is not frequent, classical inference methods may be used, as explained in annex B, to 
estimate parameters (i.e. means) and provide confidence intervals. 
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In case such an interval is asked for the mean, the confidence interval supported by classical 
inference theory is  

/2 /2,s sx z x z
n nα α

⎡ ⎤− +⎢ ⎥⎣ ⎦
    ,          (4.1.1.2) 

where x  plays the role of 
ˆ
MLθ , s n  plays the role of 

ˆ( )MLσ θ  in the last row of table B.2 in 
annex B, and s is the sample standard deviation as defined in (4.1.3.4). This interval will 
have a confidence level close to 1-α (the expected one) only if s is very close to the real 
standard deviation of the random variable under study, which is only true for asymptotic 
values of the sample size (n>>). The authors of this report do strongly advice not to use this 
type of asymptotic confidence intervals when the sample kurtosis is high, see section 4.1.4.    

The geometric mean 

The geometric mean of the sample is defined as: 

( ) nn

i ixx
/1

1

~ ∏ =
= .                                      (4.1.1.3)            

The geometric mean is only of interest when all sampled values are positive. It may also be 
computed when there are null values, but then it is also null. The geometric mean gives a 
measure of central tendency when a logarithmic scale is used. The usual way to compute the 
geometric mean (in order to avoid numeric problems) is computing the arithmetic mean of 
the logarithm of the actual sampled values and transforming the obtained result 
consequently, i.e.: 

( ) 101
1 log ( )

10
i n

ii
n x

x
=

=
⎡ ⎤
⎢ ⎥⎣ ⎦∑=%   .                                           (4.1.1.4) 

The geometric mean is always either equal to or smaller than the arithmetic mean. In cases 
when positive and null values are mixed in the same sample, it may be of interest to compute 
a geometric mean restricted to the m sampled positive values (m<n). The geometric mean 
does also answer the question “if all quantities had the same value, what would that value 
have to be in order to achieve the same product”. 

As many rv used as outputs in PA studies are spread over several orders of magnitude, the 
geometric mean is useful to estimate the “center of mass” of the data in a logarithmic scale 
(the arithmetic mean estimates the “center of mass” in a linear scale). 
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The median 

Another alternative to estimate a central value is the median. The median of a sample is the 
value that splits the sample in two equal parts. Suppose that the sample sorted in ascending 
order is )()2()1( ,...,, nxxx , then 

( )⎪⎩

⎪
⎨
⎧ +

=
+

+

odd is  if   

even is  if   2)(
)(

2/)1(

)12/()2/(

nx

nxx
xmed

n

nn
.                            (4.1.1.5) 

It is the value of x for which the CDF 2/1)( =xF . 

The median is a robust indicator, but it is more difficult to perform algebraic computations 
using it than using the mean. For instance, the linearity property is no longer valid. On the 
other hand, the median is conserved when applying a strictly monotonic increasing transform 
to the sample (the transform of the median is the median of the transformed values), which is 
not the case for the mean. 

Example:  

The sample data (n=51) represents the release of 94Nb getting out of the fractured zone after 
5000 years computed in the reference problem; see Prváková et al. (2008). In figure 1, the 
point in the upper left corner is an extreme value. 
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Figure 1.- A sample of 94Nb getting out of the fractured zone after 5000 years. 

The mean of the whole sample is 1018.251 −= Ex , while if we exclude the extreme point we 

obtain 1113.950 −= Ex . The effect on the mean of that single value is huge; excluding it from 

the sample produces a decrease of 58% in the mean. This is not the case with the median. 
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The original median (sample of size 51) was 1122.2)(51 −= Exmed . After removing the 

extreme value, the new median is 1121.2)(50 −= Exmed ; the two values are quite similar, 

which is due to its robustness as a measure for the central tendency. 

The mode 

The mode is the location of a local maximum of the PDF. A PDF can be multimodal, which 
often means that we are dealing with heterogeneous populations. For discrete data, the 
mode is the most frequently observed value. However, the estimation of the mode using a 
sample depends entirely on the method used to estimate the PDF (see section 4.3.3).  
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Figure 2.- Example of a multimodal PDF; there are 4 modes around 19000, 30000, 40000 

and 50000 years. 

4.1.2 Quantiles 

Quantiles generalize the median for a probability α different from ½, i.e. they are values that 
split the data in two parts, such as the proportion of data inferior or equal to this value is 
equal to α.  The α -quantile αq  is defined by the equation 

αα =)(qF , ]1,0[∈∀α .                           (4.1.2.1) 

However, when the cumulative distribution is not a strictly increasing function, this equation 
might have either an infinite number of solutions or no solution at all, as can be seen in figure 
3. The usual conventions to overcome this problem are based on the ordered observations 

)()1( nxx ≤≤K . The smallest observation corresponds to a probability of 0 and the largest 
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one to a probability of 1. The ith observation corresponds to α -quantile αq  (i.e. )(ixq =α ), 

where α may be defined as follows: 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+−
+−

+
−

−−

=

.)41()83(
or   )31()31(

or   
or   )1/(

or   /)5.0(
or   

ni
ni

ni
ni

i/n

1)1)/(n(i

α                            (4.1.2.2) 

In (4.1.2.2), the two emphasized expressions are the most used ones:  

• the first one because it has a symmetry with respect to the CDF: the smallest 
observation corresponds to a probability of 0 and the largest one to a probability of 
1; it is the one used by default by some statistical software packages such as R 
[http://cran.r-project.org/] and S [http://www.insightful.com/]; 

• the fourth one because it corresponds exactly to the definition of the empirical 
cumulative distribution function (see formula (4.2.1.1)). 

Concerning the other expressions in (4.1.2.2): 

• the second one is popular amongst hydrologists, 

• the third one is used by other statistical software packages such as Minitab 
[http://www.minitab.com/] and SPSS [http://www.spss.com/], 

• using the fifth expression, one obtains a quantile estimate that is approximately 
median-unbiased (i.e. the median of the estimator is approximately unbiased) 
regardless of the distribution of x, 

• using the last expression, one obtains a quantile estimate that is approximately 
unbiased for the expected order statistics if x is normally distributed. 

More details about different alternatives to define quantiles may be found in Hyndman and 
Fan (1996). 

If α is not exactly one of the values in (4.1.2.2), a linear interpolation may be used to estimate 

αq , as for example ⇒
−

+
−
−

−=
11

)1()1(
n

ia
n
iaα  )1()()1( ++−= ii axxaqα , 10 << a . 

 

 

 



 
 

PAMINA Sixth Framework programme, 19.08.2009 15 
 
 

Example:  

Let us consider the following n=6 sample{ }5,4,3,2,1,0 . We assume that the ith observation is 

the estimation of the α -quantile αq , where ))/(n(i 11 −−=α . We want to estimate the 1/4 

quantile, which is not of the form ))/(n(i 11 −−=α . 

But, as 
5
2

4
1

5
1

<< , there exists a value a = 0.25, ( 10 << a ), and a value i = 2, such that 

55
1)1(

4
1 iaia +

−
−= . We hence obtain 25.1225.0175.025.075.0 )3()2(4/1 =×+×=+= xxq . 

The median is the ½ quantile. Some other particular quantiles frequently used are: 

• percentiles, the 1/100-quantiles 

• deciles, the 1/10-quantiles 

• quartiles, the 1/4-quantiles. 

For more details concerning quantile estimation see section 4.2. 
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Figure 3.- Empirical cumulative distribution function and quantile signification 

4.1.3 Dispersion statistics 

The measures of dispersion are important for describing the spread of the data around a 
central value. Two distinct samples could have similar means or medians but completely 
different degrees of dispersion around them. 
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The range 

The range is defined as the difference between the largest and smallest sample values:   

)min()max()1()( xxxxrange n −=−= .              (4.1.3.1) 

It is one of the simplest measures of variability to calculate, but it depends only on extreme 
values (and hence it is a non robust indicator) and provides no information on the data 
distribution.  

The interquartile range (interval) 

The interquartile range is defined as the difference between the 3rd and the 1st quartiles, i.e. 

4/14/3 qq − . It is a robust indicator. The meaning of this indicator is that at least 50% of the 

“central” data are contained in this interval. It is also used for drawing the boxplots (see 
section 4.3.4). 

The variance and the standard deviation 

The variance was meant to measure the mean deviation from the mean value of the sample, 
by taking into account positive and negative deviations in the same manner. This is the 
reason for introducing the quadratic function sample variance as: 

∑
=

−=
n

i
i xx

n
x

1

2)(1)var(
   .               (4.1.3.2) 

As the variance does not have the same units as the sample (because of the squares), the 
standard deviation has been introduced: 

∑
=

−==
n

i
ix xx

n
x

1

2)(1)var(σ
  .                          (4.1.3.3) 

Alternative definitions of the variance and the associated standard deviation are 

∑
=

−
−

=
n

i
i xx

n
s

1

22 )(
1

1

; 
∑

=

−
−

=
n

i
i xx

n
s

1

2)(
1

1

  .                   (4.1.3.4) 

Saporta (1990) provides further information about the different definitions of the variance. 

If the sample is approximately normal, then 

• The interval mean ± one standard deviation contains approximately 68% of the 
measurements in the series. 
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• The interval mean ± two standard deviations contains approximately 95% of the 
measurements in the series.  

• The interval mean ± three standard deviations contains approximately 99.7% of the 
measurements in the series.  

When the distribution that generates the sample is unknown, similar rules, based on 
Chebyshev’s inequality may be applied, see Jordaan (2005). However, the bounds that are 
computed are rather loose, but they are valid irrespective of the distribution that generates 
the data; knowing the sample mean and the sample standard deviation is enough to 
calculate them. Chebyshev’s inequality states that 211)( kksxxfr i −≤≥− , where k is any real 

number and fr  stands for relative frequency. It provides useful information for k>1: 

• The interval mean ± two standard deviations contains at least 75% of the 
measurements in the series.  

• The interval mean ± three standard deviations contains at least 89% of the 
measurements in the series.  

The geometric standard deviation 

The sample geometric standard deviation (gsdx) is  

10 y
xgsd ο= ,                                              (4.1.3.5) 

where yσ  is the standard deviation of the variable Y=log10(X). The geometric standard 

deviation is helpful to assess the spread of values around the geometric mean. When applied 
to the geometric mean and the geometric standard deviation, Chebyshev’s inequality states 

that ( ) 21 1k k
ifr gm gsd y gm gsd k−× ≤ ≤ × ≥ − . When k is set to 2 and 3 respectively, the 

following two statements may be said 

• The interval geometric mean × (geometric standard deviation)± 2  contains at least 
75% of the measurements in the series; 

• The interval geometric mean × (geometric standard deviation)± 3  contains at least 
89% of the measurements in the series. 

4.1.4 Shape statistics 

The moments of a rv allow to characterize its probability distribution. Moments may be 
computed with respect to the origin (0) or with respect to a measure of central tendency, 
usually the mean. The first order moment with respect to the origin is the mean of the rv and 
the second order moment with respect to the mean is the variance. The third and the fourth 
moments define the shape of the distribution. 
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The skewness coefficient 

The skewness coefficient is the third standardized moment with respect to the mean, i.e.  

3
1

3

1

)(1

x

n

i i xx
n σ

γ ∑ =
−

= ,                                                            (4.1.4.1) 

where xσ  is computed as in expression (4.1.3.3). A positive coefficient means that the 
distribution has a long right tail, (the distribution is also known as right-skewed) while a 
negative coefficient means that the distribution has a long left tail (the distribution is also 
known as left-skewed), see figure 4. Any symmetric distribution has a skewness coefficient 
equal to 0, as for example the normal and the uniform distributions. It should be noted though 
that some non-symmetric distributions could also have a null skewness coefficient. 

Other statistics may also be used to detect lack of symmetry, such as the difference between 
the mean and the median. The mean is larger than the median in a right-skewed set of data, 
while it is smaller for left-skewed set of data. Positive (all values larger than 0) right-skewed 
sets of data do also show large standard deviations compared to their means.     
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Figure 4.- PDFs for distributions with different skewness coefficients: > 0 (right-skewed, left); 
= 0 (symmetric, center); < 0 (left-skewed, right). 

The kurtosis  

The kurtosis coefficient is the fourth standardized moment with respect to the mean, i.e. 
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= .                                                         (4.1.4.2) 

It represents a measure of the “peakedness” of the distribution, see figure 5. A kurtosis 
coefficient larger than 3 means that the distribution has sharper “peaks” and flatter “tails” 
than a normal distribution (leptokurtic distribution). A kurtosis equal to 3 means that the 
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distribution is approximately normal (mesokurtic distribution). A kurtosis below 3 means that 
the distribution is flatter than the normal distribution (platykurtic distribution).  

The kurtosis coefficient is sometimes defined as 34
4 −σμ , where 4μ  is the sample fourth 

moment around the mean (numerator –including factor 1/n- in expression (4.1.4.2)), in order 
to make the kurtosis of the normal distribution equal to zero instead of 3. The kurtosis is not 
an intuitive coefficient; it is quite difficult to say, by looking at a PDF if the distribution has a 
large or small kurtosis. What is important, in terms of shape, for a leptokurtic distribution is 
that there is a sharper “peak” around the mean (which means a higher probability than a 
normally distributed rv of values close to the mean) and “fat tails” (which means a higher 
probability than a normally distributed rv of extreme values), as it can be seen in figure 6. 
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Figure 5.- PDFs for distributions with different kurtosis : >3 (left) ;  =3 (center); <3 (right). 

The kurtosis gives also an indication about the problems that can arise when trying to 
estimate the mean of a random variable. Expression (4.1.1.2) provides the way to estimate a 
confidence interval for the mean of a random variable that follows an unknown probability 
distribution. It includes the sample standard deviation (s) as the key data to know the width of 
the interval. The variance of the square of this statistic for a generic random variable is 

( )( )
12 2 2( ) 2 / ( 1) 3 /Var s n K nσ= − + − ,   (4.1.4.3) 

where K is the real kurtosis of the random variable. Only when this variance is very small the 
sample standard deviation is close to the real standard deviation of the random variable and 
the asymptotic confidence interval becomes accurate. Large values of K make that variance 
larger and makes necessary to take larger sample sizes to get accurate estimates of the 
standard deviation. When the sample kurtosis (which is the best available estimator for the 
real kurtosis) is large, the sample standard deviation may show a large variability. That is the 
reason not to use confidence intervals for the mean obtained under asymptotic assumptions 
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such as the one given in (4.1.1.2), unless the asymptotic conditions are known to be fulfilled, 
which is not frequent. 
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Figure 6.- Influence of increasing Kurtosis 

4.2 Sample size selection 

The larger the sample size, the more information the sample contains. Nevertheless, 
increasing the sample size means increasing the computational cost. So there is a balance 
between the information we can obtain and its cost.  In order to set sample sizes we will 
consider two concepts: conservative estimates of quantiles and tolerance intervals.  

Quantile estimation is a very important issue when dealing with outputs of PA codes since, in 
many occasions, safety limits are based on quantiles. This is the case, for example, when a 
safety limit is set in the following terms: In order to be acceptable, the repository should not 
produce, at any time in the future, an effective total dose rate higher than DL mSv·y-1 with a 
probability higher than 0.05. This means that the percentile 95% of the output variable 
‘effective total dose rate’ should be lower than DL. 

In the case of a real-valued rv Y, quantile estimation means determining the value y such 
that the likelihood that Y takes a value lower than y is some prescribed value. Using the CDF 
of Y, F(y) = P(Y ≤ y), we seek an estimation of the α-quantile ya defined by F(ya)= α.  

In the next sections is a description of how to set minimum sample sizes to achieve given 
quantities of information. Most of the ideas used come from the theory of order statistics. The 
references for this section are Cannamela et al. (2007), David and Nagaraja(2003), Guba et 
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al. (2003), Makai and Pal (2006), Nutt and Wallis (2004 and 2005), Orechwa (2005), Wallis 
(2003), Wallis (2006) and Wilks (1941). 

4.2.1 The empirical estimator 

Let  
1

1ˆ ( ) 1
i

n

EE Y y
i

F y
n ≤

=

= ∑  be the empirical estimator of the CDF, where yYi ≤1  is the indicator 

function (one for Yi ≤ y and zero for Yi > y).  This leads to the following estimator of the α- 
quantile  

, ( )
ˆ ˆinf{ , ( ) }n EE nY y F y Yα αα ⎡ ⎤⎢ ⎥

= > = .         (4.2.1.1) 

This means that, if we need to estimate the 95% percentile of Y and we have a sample of 
size 100, 0.95 100 95nα = ⋅ =⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ . The estimate would be the sixth largest observation of Y 

in the sample (the 95th smallest observation). The properties of this estimator are given in 
annex C. The variance of this estimator is large. Moreover, from the asymptotical law, we 

obtain ˆ ) 0.5α,n αP(Y y≥ ≈ , which comes from the fact that this is an asymptotically unbiased 

estimator of the α- quantile. So, for sufficiently large sample sizes (we never know if the 
sample size actually used is large enough), roughly 50% of the times our estimate will be 
larger and 50% of the times it will be smaller than the actual α- quantile. 

Let us assume that we wish to estimate and provide a 100(1-δ)% confidence interval for the 
quantile α of a random variable X. Given a sample size n, the point estimate used to estimate 
that quantile will be the order statistic ( )nY α⎡ ⎤⎢ ⎥

, as proposed in (4.2.1.1). The confidence interval 

sought will be limited by the values of the order statistics ( )rY  and ( )sY , where r n sα< <⎡ ⎤⎢ ⎥ , 

and the r and s selected are the closest integer numbers that meet the condition 

1( , , , ) (1 ) 1s j n j
j r

n
r s n

j
π α α α δ− −

=

⎛ ⎞
= − ≥ −⎜ ⎟

⎝ ⎠
∑  .                                            (4.2.1.2) 

The way to do it is to start with r nα= ⎡ ⎤⎢ ⎥  and 1s nα= +⎡ ⎤⎢ ⎥ , and decrease r by one unit and 

increase s by one unit alternatively until inequality (4.2.1.2) is fulfilled. In the case of α=0.95, 
δ=0.95 and n=100, we obtain r=91 and s=100 (the 95% confidence interval for the 95% 
percentile is the interval defined by the 10th largest observation and the largest observation). 
It could happen that the sample size is not large enough to produce the confidence interval 
with the desired confidence level. This problem may be solved enlarging the sample size or 
considering a confidence interval with a smaller confidence level (larger δ).  

When working in the area of safety, we are usually interested in estimating extreme (high) 
quantiles, such as the 95%, the 99%, etc. In those cases, it could be advisable to be more 
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confident that our estimate is above the actual quantile. Then we would be interested in a 
conservative estimator of the α- quantile like Wilks’ introduced below. 

4.2.2 Wilks estimator 

In order to set a conservative estimator for the quantile of interest (yα), we should decide how 
confident we want to be that our estimator exceeds the real quantile. The confidence level β 
would typically be either 0.95 or 0.99. The estimator considered is the one that fulfils 

, ( )
ˆ

n n sY Yα α +⎡ ⎤⎢ ⎥
= , such that ( ) )αn sP(Y yα β+⎡ ⎤⎢ ⎥

≥ =  ,              (4.2.2.1) 

where s ≥ 1. This estimator, based on order statistics, is referred to as Wilks estimator, and is 
based on the probabilistic distribution of the number of times a sample of the rv exceeds a 
certain threshold. Let us rename it as ( 1)n rY − + . For each couple (n,r) we will get a given value 

)( )1( αyYP rn >+− , which is (see annex C for more details) 

jnjrn

j j
n −−

=
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛∑ )1(
0

αα                                      (4.2.2.2) 

For a fixed r, we may (numerically) compute the smallest value of n needed to make this 
expression (4.2.2.2) larger than or equal to β (for fixed values of β and α). 
 

 
 

Figure 7.- Comparison between distributions of the empirical and the Wilks estimators, for 
samples from a normal distribution (the real 95% quantile for the normal 
distribution is 1.6449). For this example, the variance of the empirical estimator is 
0.0045, while for the Wilks estimator is 0.0053. 
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Interpretation: n is the number of simulations required for the rth largest value of the ordered 
sequence of outputs to exceed the α- quantile with a prescribed confidence level β. 

Example: For α = β = 95%, we have the following couples : 

(r = 1, n = 59) ; (r = 2 , n = 93) ; (r = 3, n = 124) … (r = 39 , n = 991). 

For r=1, the previous formula becomes 

nαβ −= 1 .                                             (4.2.2.3) 

Remark: The variance of this estimator is even larger than the one of the empirical estimator 
(see figure 7). 

In conclusion, the problem of quantile estimation can be solved by Monte Carlo techniques, 
but the estimates are imprecise (i.e. with large variance) if the number of runs is often 
considered “reasonable” (100 – 1000 runs). 

4.2.3 Tolerance intervals 

An alternative solution to set a sample size is to estimate a tolerance interval rather than a 
percentile, see Guba et al. (2003) and David and Nagaraja (2003). A tolerance interval has 
random bounds, denoted by L (lower) and U (upper) and the requirement for this interval is 
that it should contain at least a proportion γ of the population, with probability β (with 
prescribed γ  and β ). Hence we seek L and U such that 

βγ =⎥
⎦

⎤
⎢
⎣

⎡
≥∫

U

L

dyyfP )(    ,                       (4.2.3.1) 

where f is the (unknown) underlying PDF. 

It has been shown (see for instance David and Nagaraja (2003)) that the left hand side of 
equation (4.2.3.1) is independent of f if and only if the bounds L and U are order statistics 
(i.e. )()2()1( nYYY ≤≤≤ K ). To see the necessary condition, let )(rYL = and )(sYU = , r < s  

(where −∞=)0(Y and +∞=+ )1(nY ), and then the equation (5.18) may be written as 

βγ =≥− ])()([ )()( rs YFYFP . The quantities )(),( )()( rs YFYF are order statistics for a uniform 

distribution in [0,1]. The distribution of the range (here the range is )()( )()( rs YFYF − ) of order 

statistics is known for uniform distributions and is given by David and Nagaraja (2003): 

( ) ( )[ ( ) ( ) ] 1 ( , 1)s rP F Y F Y I s r n s rγγ β− ≥ = − − − + + = ,              (4.2.3.2) 
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where ),( kjIγ is the incomplete beta function2. Equation (4.2.3.1) and (4.2.3.2) are not 

satisfied exactly, but some values of r and s may be chosen such that  

βγ ≥⎥
⎦

⎤
⎢
⎣

⎡
≥∫

U

L

dyyfP )( .                            (4.2.3.3) 

 
Table 1.- Minimum sample sizes (n) for one and two sided tolerance intervals for different 

values of β and γ. 

 Two sided tolerance intervals One-sided tolerance intervals 

β \ γ 0.90 0.95 0.99 0.90 0.95 0.99 

0.90 38 77 388 22 45 230 

0.95 46 93 473 29 59 299 

0.99 64 130 662 44 90 459 
 

Table 2.- Values of γ for the standard tolerance interval for diferent values of n and of β (from 
Guba et al. (2003)). 

n

β=0.90 β=0.95 β=0.99
10 0,66315 0,60584 0,49565
20 0,81904 0,78389 0,71127
30 0,87643 0,85141 0,79845
40 0,9062 0,88682 0,84528
50 0,92443 0,9086 0,87448
60 0,93671 0,92336 0,89442
70 0,94557 0,93402 0,9089
80 0,95225 0,94207 0,91989
90 0,95747 0,94837 0,92851
100 0,96166 0,95344 0,93554
125 0,96924 0,96262 0,94813
150 0,97432 0,96877 0,95658
175 0,97796 0,97318 0,96268
200 0,98069 0,9765 0,96736
225 0,98282 0,97909 0,97087
250 0,98453 0,98118 0,97375
275 0,98593 0,98287 0,97618
300 0,9871 0,98429 0,97809

γ values 

 
 

                                                 
2 Which is defined by 
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Application 1: When a minimum sample size is sought, we are focusing our attention on 
what happens when the sample maximum and minimum are selected to estimate a tolerance 
interval (standard two-sided tolerance interval: )1(YL = , )(nYU = ), we obtain from (4.2.3.2) 

the following value for β: 

 1)1)(1(1 −−−−−= nn n γγγβ  .                  (4.2.3.4) 

This formula may be used in different manners. The standard way is to set the fraction of the 
random variable (γ) that we want to capture between the minimum and the maximum values 
in the sample and the confidence to get it (β); then it is solved numerically for n and the result 
rounded to the next highest integer. Table 1 provides the solution (minimum sample size) for 
several values of β and γ. For example, if we wish to get at least 99% of the random variable 
contained between the sample minimum and the sample maximum with 95% confidence, the 
sample size must be 473 at least. An alternative way is to fix n and β or n and γ and solve 
the equation in the third variable. Table 2 provides the least fraction of the random variable 
contained between the sample minimum and the sample maximum when the sample size 
and the confidence level are fixed (taken from Guba et al. (2003)). For β=0.95 and n=100, 
γ=0.953 is obtained.  

Application 2: For the standard one-dided tolerance interval case, when )0(YL = , 

)(nYU = , we obtain the following value for β: nγβ −= 1 , which is exactly the same result 

obtained in the case of the Wilks quantile estimator (and again we get n=59, 
for 95%, 95%β γ= = ). Table 2 provides minimum sample sizes for one-sided tolerance 
intervals given different values of β and γ. 

4.3 Graphic tools 

Graphic tools are used to show the spread of the values of random variables along their 
support. The tools considered as most appropriate and consequently included in this report 
are the empirical cumulative distribution function (ECDF), its complementary curve (ECCDF), 
the histogram, the estimated probability density function (PDF) and the boxplots. 

4.3.1 The ECDF and the ECCDF 

The cumulative distribution function (CDF) is defined by )()( xXPxF ≤=  and for a 

continuous rv it is also equal to ∫ ∞−
=

x
dttfxF )()( , where f(.) is the probability density 

function. The most important properties of the CDF are: 

• It is non-decreasing monotonic function,  

• 1)(0 ≤≤ xF , 
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• )()()( aFbFbXaP −=≤≤ , 

• )()( xfxF =′ . 

Alternatively, the complementary cumulative distribution function (CCDF), which is equal to 
1-F(x), may also be used. The use of the CCDF is widespread in the area of nuclear safety in 
general and specifically in the area of PA since many safety limits and safety criteria are 
given in terms of exceeding probabilities, which is the kind of information included in CCDFs. 

In figure 8 we present the CDFs and the CCDFs of some of the most frequently used 
distributions, without specifying their parameters, in order to give an idea of their aspects. 
Whenever different sets of parameters are used the position and the spread of these curves 
will be different. 
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Figure 8.- Some of the most usual CDFs and the corresponding CCDFs. 

 

The empirical cumulative distribution function (ECDF – Fn(x)) of a sample is the available tool 
to estimate the CDF of the corresponding rv, i.e.: 

},{#1)(  , xxi
n

xFIRx in ≤=∈  ,                         (4.3.1.1) 

where the symbol # denotes the cardinal of a set. The empirical complementary cumulative 
distribution function (ECCDF) is equal to )(1 xFn− .  
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Figure 9.-Example of Empirical CDF and the corresponding ECCDF 

 

In figure 9 we represent the ECDF (left) and the ECCDF (right) for some data from the 
benchmark in Prváková et al. (2008). The sample (of size n=1000) represents the decimal 
logarithms of the peaks of the release of 129I coming out of the disposal cell. It is easy to read 
directly on this representation that, for example, the percentage of the sample such that the 
log10 (129I) is less than or equal to -6.8 is around 20%. The same information can be read on 
the right panel of figure 9: the percentage of the sample such that the log10 (129I) is greater 
than or equal to -6.8 is around 80%. 
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Figure 10.-ECDF for the log10 of the 129I release at 50000 years, at the top and bottom of the 

repository, together with its 95% confidence bands.  

Moreover, Kolmogorov-Smirnov confidence bands may be computed for any ECDF and any 
ECCDF (for details on Kolmogorov-Smirnov confidence bands see Owen (2001) and 
Conover (1980)). In figure 10 we present an example of ECDF together with its 95% 
confidence bands. See Annex B for a correct interpretation of this graphic representation. 

4.3.2 The histogram 

The histogram graphically summarizes and displays the distribution of a data set. The 
histogram is constructed by regrouping the data into k bins 

][,[,[ [,[ 1212101 kk-k , aa C..., aaC, aaC ===  and then defining the (relative) frequency of each bin 

as },{#1
jij Cxi

n
f ∈= . A density is then inferred by a step function whose value for the 

jC bin is the associated frequency per unit length, i.e. )( 1−− jjj aaf . The surface below this 

step function is equal to 1. However, even if it is possible to define variable bin widths, the 
use of constant bin width is most popular. In the case of discrete variates two options are 
available: either using the cardinal of each bin (absolute frequency, see figure 11) or using 
the relative frequencies. Discrete variates can also be represented as bars. Figure 12 
illustrates the importance of the choice of the number of bins (or equivalently of the bins 
widths): the left side picture is very “noisy”, too many bins have been displayed; on the 
contrary, the right hand side picture has not enough bins, and much of the information is 
therefore lost. The only reasonable histogram is the one in the middle, where the 
corresponding estimated PDF (see section 4.3.3) has been added. The number of segments 
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should be sufficient to represent the shape of the distribution but not so small so that noise 
becomes dominant.  
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Figure 11.-Histograms for a discrete variable using as ordinate the bins cardinals. 
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histogram with 20 bins and pdf estimation
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Figure 12.-Histograms for the same data, using different number of bins. 

4.3.3 PDF estimation 

The PDF gives the probability density of a random variable X at each value x. The integral of 
the PDF in the interval [a,b] provides the probability that X takes values between a and b:  
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dxxfbXaP )()( .                                                 (4.3.3.1) 

If we consider a sample of size n ( nixi ,...,1, = ) from an unknown continuous probability 

distribution of density f, the histogram represents an approximation of the PDF f. The main 
deficiencies of the histogram are its discontinuity and the appropriate choice of the number of 
bins (or bin widths). 

The best available method to estimate probability density function (PDF) is the Kernel 
method. This is a non-parametric method (because it does not assume a certain probability 

distribution) generalizing the histogram. The kernel estimator of f, denoted by f̂ is a sum of 

“bumps” of width h placed at the observations ix : 
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K denotes the kernel. There are several desirable properties: 

• positivity : 0≥K , 

• regularity : K has to be smooth enough,  

• normalization : 1)( =∫
+∞

∞−

dxxK , 

• symmetry :  )()( xKxK −= , 

• fast decreasing at infinity. 

The most used kernels (see figure 13) are: 

• Gaussian : ( )2( ) 1 2 exp 2K x xπ= −  

• Epanechnikov : 
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• others : Triangular, Biweight, Cosine, Optcosine. 

It can be seen from figure 13 that density curves are similar for the different Kernels. Thus 
the kernel is not as important as the choice of bandwidth, h. This scaling parameter (which 
has the same physical dimension as the sample) controls: 
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• the width of the probability mass spread around a point 

• the smoothness or roughness of a density estimate. 
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Figure13.-Influence of the kernel (h=1) 
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If the bandwidth is too small, the estimated density will be under-smoothed; a large value of 
h, on the other hand, would lead to an over-smoothed estimated density (see figure 14). 

An optimal bandwidth may be computed for each kernel. The criterion to be minimized is 
either the Mean Integrated Squared Error (MISE) or the Asymptotic Mean Integrated 
Squared Error (AMISE). For instance, the optimal bandwidth for the Gaussian Kernel and 
MISE criterion is: 

5/1ˆ06.1 −= nhopt σ                                                 (4.3.3.3) 

whereσ̂  is the empirical standard deviation of the sample, i.e. ∑
=

−
−

=
n

i
i xx

n 1

2)(
1

1σ̂ . 

Unfortunately, the optimal bandwidth is over-smoothing if f is multimodal or somehow “not 
normal”. 
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Figure 14.-Bandwidth influence, from under to over-smoothing (Gaussian kernel). 
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Another option is to use the adaptive kernel method, which consists of varying h with xi, in 
order to have a small h where we have a high density of data and a large h where the data is 
sparse. The algorithm is outlined below. 

• define a pilot estimation )(~ xf (an optimal bandwidth kernel estimation with optimal 

bandwidth denoted by h0), such that 0)(~
>ixf  

• compute { } α
λ

−
= gxf ii /)(~

, where ( )∑= ))(~log(/1)log( ixfng and 10 ≤≤ α  is a 

sensitivity parameter (a good choice is 2/1=α ) 
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Silverman (1986) gives further details concerning density estimation. 

4.3.4 Boxplots 

A boxplot (also known as a box-and-whisker plot) is a way to describe graphically groups of 
numerical data using five of their summaries (the smallest observation, lower quartile (Q1), 
median, upper quartile (Q3), and largest observation). It also indicates if there are some 
observations which might be considered outliers. The length of the “box” is the interquartile 
range (IQR = Q3-Q1) and the line inside the box stands for the median. An outlier is any data 
that lies outside the interval [ ]IQRQIQRQ ×+×− 5.1,5.1 31 . The bounds of this interval are 

indicated by some tic marks and are connected to the box by a line. 
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Figure 15.-Example of boxplot for data representing the peak of the release of 129I coming out 

of the disposal cell; Prváková et al. (2008). 
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As we can see from figure 16, the boxplots, even if they show less information than 
histograms or PDFs, are very useful for making comparisons between different distributions; 
they may even suggest the existence of a second subpopulation instead of outliers (as it is 
the case for the left boxplot in figure 16).  
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Figure 16.-Comparison of the distributions for the peaks of the release of 129I coming out of 

the waste package and of the disposal cell by using boxplots; Prváková et al. 
(2008). 
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5. Tools for identifying most important input parameters 

An important part of the PA is the SA. SA analysis methods may be classified as global, local 
and screening methods. In the context of a PA, global methods are preferred because they 
provide valuable information about the relation input-output taking into account the whole 
input space and the input distributions. In the following paragraphs we make a selection of a 
minimum set of techniques (numeric and graphic) that should be applied to the output 
targeted variables. We will discuss why they are selected but we will not describe them since 
they have already been extensively described in other reports generated within PAMINA, as 
for example milestones Badea and Bolado (2008) and Plischke et al. (2009) and deliverable 
Becker et al. (2009). 

When analysing the relation between inputs and outputs in a probabilistic framework, several 
approaches may be adopted, among them the two most frequent are: to identify the 
(functional) relation between them, or to identify how the different inputs contribute to the 
variability (variance) of each output. The main numeric techniques available for the first 
approach are the regression/correlation based techniques and the Monte Carlo filtering 
techniques. The regression/correlation based techniques allow identifying linear and 
monotonic relations between inputs and outputs. Monte Carlo filtering techniques allow 
identifying relations between different regions of inputs and outputs, which are not 
necessarily either linear or monotonic. Several techniques are available to find out how much 
each input parameter contributes to the variance of an output variable (Sobol sensitivity 
indices or just sensitivity indices). Unfortunately, many of them are very expensive in 
computational terms and need sophisticated input designs that cannot be used 
simultaneously to perform uncertainty analysis. These facts bring us to consider correlation 
ratios (CR), also known as ‘cheap methods’ after Plischke et al. (2009) and Becker et al. 
(2009), as the most interesting ones to report about contributions to the variance. Among 
them, the correlation ratios are strongly supported by the authors of this report due to the 
simplicity of implementation and the good results provided. Additionally, these techniques 
may be supported by ancillary graphic techniques such as the scatterplots, the cobweb plots 
and the contribution to the sample mean plots (CSM plots); see Badea and Bolado (2008) for 
a description of all these techniques. The following set of techniques is proposed to be used 
to identify important input uncertain parameters: 

• Regression/correlation based statistics: Standardised Regression Coefficients 
(SRCs) and Standardised Rank Regression Coefficients (SRRCs) and their 
respective coefficients of determination (R2). It is always convenient transforming 
also input parameters and output variables appropriately (i.e. logarithmic 
transformation) for finding out the best possible regression/correlation based model.  

• Use of Monte Carlo filtering techniques: Smirnov test and Mann-Whitney test (this 
one also known as Wilcoxon test). The use of the t test is not advised due to the 
difficulties to fulfil test hypotheses. Two rules to divide the output sample are 
proposed: 
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o Null/non-null observations, and 

o 10%/90% rule (10% largest observations and the rest of the observations – 
90% smallest observations), though other sensible rules (i.e. 5%/95%) are not 
excluded. 

• Correlation ratios (cheap methods): Available cheap methods based on the 
computation of correlation ratios to estimate contributions to the variance of the 
output variable (sensitivity indices) are the Variance of the Conditional Expectation 
(CR-VCE), the Expectation of the Conditional Variance (CR-ECV), the Polynomial 
Fit (CR-FIT) and the Conditional Linear Model (CR-CLM). Any of these sensitivity 
techniques can be used to compute at least first order sensitivity indices. Though 
the study of the contribution to the variance of second and higher order interactions 
is convenient, restrictions imposed by the sample size used can make this either 
impossible or inaccurate. Moreover, correlation ratios may also be used to group 
contributions to the variance according to different criteria, as for example 
radionuclide, barrier, etc.  

• Graphic tools: The different capability to represent information about several input 
parameters in the same plot encourages us to use more frequently CSM plots than 
any other type of plots. Cobweb plots are very useful to support numeric information 
obtained via Monte Carlo filtering techniques. Scatterplots should only be used to 
stress some remarkable effect detected via numeric SA techniques. 

The best option to present results from numeric SA techniques is the table of results. It is 
also strongly advised to write together with the value of the statistic the rank of importance of 
each input parameter (1 for the most important, 2 for the second most important and so on), 
specially in the case of Monte Carlo filtering techniques, whose results are p-values from 
statistical tests, whose interpretation is not so obvious for persons lacking a good statistical 
background. Nevertheless, in the case of sensitivity indices, the fact that they are fractions of 
a total quantity (the variance), graphic representations such as pie charts may also be used. 
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6. Time dependent output variables 

Most of the output variables considered in a PA are time-dependent. This obliges us to 
provide tools that allow showing the evolution of their uncertainty and the evolution of the 
different sensitivity indices over time. The procedure to do this consists in computing the 
same statistics used for non-time dependent output variables at each time considered in the 
simulation and to draw the results versus time in a picture. This may be done for all numeric 
statistics considered in sections 4 and 5. The use of linear or logarithmic scales in any of 
both axes depends on the effects that the analyst wants to stress.  

 

 
Figure 17.-Evolution over time of the main 

statistical indicators for the flow of 129I 
getting out of the waste packages. 

Figure 18.-Evolution over time of the SRRCs 
and R2 for the flow of 129I getting 
out of the micro-fissured zone. 

 

Figures 17 and 18 show the results obtained for 129I in the reference problem in two different 
compartments (the waste packages and the micro-fissured zone respectively) in Prváková et 
al. (2008). Figure 17 shows the most relevant statistics characterising the distribution of the 
129I molar flow getting out of the waste packages over time. We can see at 104 y the effect of 
the sudden degradation of concrete properties. Moreover, it can also be seen the decrease 
in the uncertainty (orders of magnitude) over time; at early times the results spread over 
more than three orders of magnitude, while at late times they are spread over less than two 
orders of magnitude. It could be convenient to put together with this picture the 
corresponding numeric statistics at some selected times. Figure 18 shows the results of the 
regression-based analysis for the 129I molar flow getting out of the micro-fissured zone over 
time. It can be seen the change of sign of the SRRC associated to the KdIUA (most important 
parameter all over time according to this SA technique), which produces a large drop in the 
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value of R2 around 105 y. The effect of the concrete degradation on these SA statistics can 
also be seen. A lot of useful information about the system behaviour over time may be 
obtained from these types of graphic representations, mostly if UA and SA are used in a 
combined manner. 
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7. A template to present PA results 

The objective of creating a template to present PA results is to show, in a systematic way, 
main results concerning the uncertainty about output variables and identify most important 
input parameters or sets of input parameters. In order to create this template we will classify 
output variables as either time-dependent or as non time-dependent. For each output 
variable a minimum set of statistics will be suggested, while other statistics will be considered 
as optional, and this will be done both for the uncertainty analysis and for the sensitivity 
analysis. Though candidate variables were mentioned in chapter 3, the selection of the 
output variables to study is not within the scope of this report; this is left completely to the 
election of the organisation interested in developing the study. The study of ‘derived input 
parameters’ (combinations of input parameters that have a stronger influence on the output 
than the original sampled parameters, see Cormenzana et al. (2009) and Bolado et al. 
(2009)) is also left to be decided by the organisation interested in the study.  

7.1 Non time-dependent output variables 

Among these output variables we will consider any variable that takes only one value per 
realisation. This includes peaks ant time to peaks among others. Firstly we will consider the 
statistics needed to do the uncertainty analysis, then the ones related to the sensitivity 
analysis. 

7.1.1 Uncertainty analysis 

Quantitative indicators (presented in tables): 

• Suggested: Mean, standard deviation, selection of quantiles (at least 1% and/or 5%, 
median, 95% and/or 99%), skewness coefficient and kurtosis. 

• Optional: Variance, mode, other quantiles and derived quantities (i.e. minimum, 
25%, 75%, other alternative quantiles, maximum, interquartile range and range), 
geometric mean, geometric standards deviation, and skewness coefficient and 
kurtosis for the logarithm of the variable. Confidence intervals for specific quantiles 
as required. 

Graphic indicators: 

• Suggested:  

o ECDF. 

o In case the peak of a time-dependent output variable and the time to the peak 
are considered in the study, it is also suggested to provide the scatterplot of 
both output variables.  

• Optional: ECCDF, PDF and boxplots. 
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7.1.2 Sensitivity analysis 

Quantitative indicators (presented in tables): 

• Suggested: 

o SRCs and R2 (both for raw values and for the logarithm of the values), SRRCs 
and corresponding R2. 

o First order sensitivity indices calculated via correlation ratios (presented as 
tables or as pie charts). 

o Smirnov and/or Mann-Whitney statistics based on any meaningful rule to 
divide the output sample (null/non-null observations, 10%/90%, etc.). Provide 
preferably the p-value of the associated test instead of the statistic itself. Use 
the value of the statistic only if the sample size is so large that several 
p_values become 0.0.  

• Optional: 

o Second or higher order sensitivity indices calculated via correlation ratios 
(presented as tables or as pie charts), if needed and if the sample size is large 
enough. 

o Statistic associated to the CSM plot (maximum distance to the diagonal), as 
potential support to first order sensitivity indices. 

o Any other SA technique applicable to a sample obtained via a non-biasing 
sampling technique. 

Graphic indicators: 

• Suggested: 

o Contribution to the sample mean plot. 

o Cobweb plot as support to Monte Carlo filtering statistics. 

• Optional: 

o Scatterplots. Only to highlight or support specific findings of numeric indicators 
and selecting conveniently the scales (linear, log, ranks). 

7.2 Time-dependent output variables 

Among these variables we also consider time dependent variables at selected times. 

7.2.1 Uncertainty analysis 

Quantitative indicators (presented in tables) for selected times: 

• Quantitative indicators for selected times are optional:  
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o Mean, standard deviation, selection of quantiles (at least 1% and/or 5%, 
median, 95% and/or 99%), skewness coefficient and kurtosis. 

o Variance, mode, other quantiles and derived quantities (i.e. minimum, 25%, 
75%, other alternative quantiles, maximum, interquartile range and range), 
geometric mean, geometric standards deviation, and skewness coefficient 
and kurtosis for the logarithm of the variable. Confidence intervals for specific 
quantiles as required. 

Graphic indicators at selected times: 

• Graphic indicators at selected times are optional: 

o ECDF, ECCDF, PDF and boxplots. 

Graphic indicators (presented in pictures: evolution of quantitative indicators over time): 

• Suggested: 

o Mean, standard deviation, selection of quantiles (at least 1% and/or 5%, 
median, 95% and/or 99%), skewness coefficient and kurtosis. 

o Set of all individual runs. 

• Optional:  

o Variance, mode, other quantiles and derived quantities (i.e. minimum, 25%, 
75%, other alternative quantiles, maximum, interquartile range and range), 
geometric mean, geometric standards deviation, and skewness coefficient 
and kurtosis for the logarithm of the variable. Confidence intervals for specific 
quantiles as required. 

7.2.2 Sensitivity analysis 

Quantitative indicators (presented in tables) for selected times: 

• Quantitative indicators for selected times are optional: 

o SRCs and R2 (both for raw values and for the logarithm of the values), SRRCs 
and corresponding R2. 

o First order sensitivity indices calculated via correlation ratios (presented as 
tables or as pie charts). 

o Smirnov and Mann-Whitney statistics based on any meaningful rule to divide 
the output sample (null/non-null observations, 10%/90%, etc.). Provide 
preferably the P-value of the associated test instead of the statistic itself. Use 
the value of the statistic only if the sample size is so large that several 
p_values become 0.0.  
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o Second or higher order sensitivity indices calculated via correlation ratios 
(presented as tables or as pie charts), if needed and if the sample size is large 
enough. 

o Statistic associated to the CSM plot (maximum distance to the diagonal), as 
potential support to first order sensitivity indices. 

o Any other SA technique applicable to a sample obtained via a non-biasing 
sampling technique. 

Graphic indicators at selected times: 

• Graphic indicators at selected times are optional: 

o Contribution to the sample mean plots. 

o Cobweb plots as support to Monte Carlo filtering statistics. 

o Scatterplots. Only to highlight or support specific findings of numeric indicators 
and selecting conveniently the scales (linear, log, ranks). 

Graphic indicators (presented in pictures: evolution of quantitative indicators over time): 

• Suggested: 

o SRCs and R2 (both for raw values and for the logarithm of the values), SRRCs 
and corresponding R2. 

o First order sensitivity indices calculated via correlation ratios. 

• Optional: 

o Smirnov and Mann-Whitney statistics based on any meaningful rule to divide 
the output sample (null/non-null observations, 10%/90%, etc.). Provide 
preferably the P-value of the associated test instead of the statistic itself. Use 
the value of the statistic only if the sample size is so large that several 
P_values become 0.0.  

o Second or higher order sensitivity indices calculated via correlation ratios, if 
needed and if the sample size is large enough. 

o Statistic associated to the CSM plot (maximum distance to the diagonal), as 
potential support to first order sensitivity indices. 

o Any other SA technique applicable to a sample obtained via a non-biasing 
sampling technique. 

7.3 Remarks about suggested and optional statistical indicators 

Along this section, the reader could get the impression that the selection of a statistical 
indicator as suggested or optional is a little arbitrary. Certainly this is not the intention of the 
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authors of this document. The general rule to select a statistical indicator as suggested is 
providing essential information, while optional indicators are those that provide 
complementary information. In some cases, the reason for considering some indicators as 
optional is to avoid providing too much either overlapped or redundant information, in order 
to keep a moderate report size. In the opinion of the authors of this document, suggested 
statistics should always be provided, while the analysts have to decide what optional 
statistics have to be included in order to get some additional relevant pieces of information 
about the output variables and the system under study. 

For example, if the analyst wishes to show the main characteristics of a non time-dependent 
output variable, the mean, the standard deviation, the five basic suggested quantiles (1%, 
5%, median, 95% and 99%), together with the skewness coefficient and the kurtosis, are 
enough. The basic central tendency, dispersion and shape characteristics are summarised 
with these statistics, keeping the quantity of data shown still moderate. Providing additional 
statistics will not provide significant additional information at the expenses of creating too 
crowded tables. A graphic representation is always desirable. All the information contained in 
the sample is given by the empirical cumulative distribution function (ECDF). The empirical 
complementary cumulative distribution function (ECCDF) provides the same information. The 
estimated probability density function (PDF) includes some data modelling, and the result of 
the estimated curve depends on the smoothing model parameters. The boxplot is useful to 
identify data that differ from the data set bulk, but hides many distribution details. This is why 
the ECDF is suggested, while the others are considered as optional and should be used only 
to highlight some important feature. 

In the case of time dependent output variables, uncertainty and sensitivity statistics can be 
reported as plots (uncertainty or sensitivity measure vs. time), but they can also be reported 
as tables at selected times. Plots are always suggested (evolution of all runs vs. time, 
evolution of some specific uncertainty statistics –mean, standard deviation and specific 
quantiles- vs. time, and evolution of some sensitivity indices –regression statistics and Sobol 
sensitivity indices- vs. time), because they summarize information in an optimal way. 
Nevertheless, when the natural scale of the ordinate axis (y axis) is logarithmic, providing the 
information in tables for specific times may also be convenient, due to the difficulty of 
estimating a value given in such kind of scale. This is the case, for example, of means, 
standard deviations and quantiles evolving over time. Providing those tables for regression 
statistics or Sobol sensitivity indices does not help so much because the values associated 
to important parameters may easily be read from in plots (a linear scale in the y-axis is 
adequate). 

In general, regarding plots for sensitivity analysis of non time-dependent output variables, the 
use of cobweb plots and contribution to the sample mean plots (CSM plots) is encouraged, 
while the systematic use of scatterplots is discouraged always (not only for non time-
dependent output variables). The reason for this selection is the possibility of including in one 
single plot the information corresponding to several input parameters in the case of the 
cobweb plots and the CSM plots, which cannot be done with scatterplots. The use of 
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sensitivity plots for time-dependent output variables is always considered optional due to the 
large space that this would occupy in a report (one plot per time considered). In such a case 
a careful selection of times should be done in order to generate a moderate size report. 
Scatterplots should only be used to highlight specific relevant selected effects.  
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8. Template application 

The template designed in section 7 has been applied to the dose rates due to 129I for the 
Spanish reference concept in granite; see ENRESA (2000). This reference concept is based 
on the disposal of spent fuel in carbon steel canisters in 500 m long galleries at a depth of 
500m. Canisters are surrounded by high-density bentonite. 

The expected behaviour of this type of repository is as follows. Water reaches the disposal 
drifts via small fractures, and saturates bentonite in a few decades. Minimum container 
lifetime due to anaerobic general corrosion is 20,000 years, although in the evaluation it is 
assumed that a few (up to 10) canisters fail much earlier due to a fabrication defect. After 
canister failure, and since no credit is given to the cladding as a barrier, there is an 
instantaneous release of some volatile radionuclides, such as 129I, 36Cl and 135Cs. The 
gradual release of the radionuclides in the UO2 matrix starts when groundwater reaches the 
waste. 

The radionuclides released from the waste dissolve or precipitate in the water in the canister 
cavity, depending on their solubility limits. Dissolved radionuclides are transported through 
the bentonite buffer by diffusion and pass to the groundwater flow in the near field close to 
the disposal drift. Both sorption and anion exclusion in the bentonite are considered. 
Radionuclide transport in the granite is controlled by fractures, and in the calculations the 
geosphere is represented by a single one-dimensional planar fracture. Longitudinal 
dispersion and matrix diffusion into the wall rock are modelled, including sorption onto the 
rock matrix and anion exclusion. 

The radionuclides that cross the geosphere are discharged to a river used by the critical 
group to produce most of its aliments. The dose to an average member of this critical group 
is used as the main indicator of the safety of the repository. 

The model has 135 random independent input parameters and considers 29 chemical 
elements. No radionuclide is affected by more than 21 random parameters: 3 related to the 
canister failure, 3 to the release from the waste, 6 to the transport in the near field and 9 to 
the transport in the far field. Biosphere parameters are considered constant. As mentioned at 
the beginning of this section, this application is done only for the dose rate in biosphere due 
to 129I. Only 18 input parameters affect the results obtained for this radionuclide. Their names 
and short descriptions are reported in table 3. 

The peak of the dose rate due to 129I and the time to the peak dose rate will be considered 
non time-dependent output variables in this application, while the dose rate due to 129I at all 
times and at 6 specific times (3.0E+4, 1.0E+5, 3.0E+5, 1.0E+6, 3.0E+6 and 1.0E+7 a) will be 
time-dependent output variables. Sections 8.1 and 8.2 contain the implementation of the 
template for these output variables. All statistics (numeric and graphic) classified as 
‘suggested’ in chapter 7 have been included in this implementation, together with a few that 
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were classified as ‘optional’. The design of tables of results and the location of tables and 
pictures in pages has been done with the aim of optimising the space used.   

 
Table 3- List of input random parameters (18) affecting Iodine (I) in the application case. 

Input parameter Short description 
Waste (2)  

R1000 UO2 matrix alteration rate after 1000 years of cooling  

GAPI Fraction of the inventory of Iodine released immediately when 
the canister fails – Instant Release Fraction (IRF) 

Canisters (3)  

FAIL Number of canisters with initial defects that fail in a century 
approximately 

MEAN Mean duration of the canisters due to generalised corrosion 

SLOPE Parameter for the Weibull distribution of canister failures 

Near field (5)  

VC1 Volume of water in the canister cavity 

POR  ANIONS  BUFFER Fraction of bentonite porosity accessible to anions 

WATER  NF Groundwater flow in the granite of the near field 

KDBEI Distribution coefficient bentonite-water for Iodine 

DIFFI Diffusion coefficient in bentonite porewater (Dp) for Iodine 

Water flow (4)  

WATER  TT0 Water travel time for a kinematic porosity of 10-4 

KINEM  POR Kinematic porosity of the granite 

PECLET Peclet number (longitudinal dispersion) 

PATH  LENGTH Length of the geosphere pathway, from repository to biosphere

Granite matrix (4)  

FWA Flow wetted area 

THICKM Thickness of the granite matrix 

PORMAT Porosity of the granite matrix 

POR  ANIONS  GRANITE Fraction of granite matrix porosity accessible to anions 
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8.1 Non time-dependent output variables (Peak annual dose rate in 
biosphere due to 129I and time to the peak) 

8.1.1 Uncertainty analysis results. 

 
Table 4.-Uncertainty statistics for the Peak annual dose rate in biosphere due to 129I and for 

the time to the peak. 
 

Mean Std. dev. 
Quantile

1% 
Quantile

5% Median
Quantile

95% 
Quantile 

99% 
Skewness 
coefficient Kurtosis

Peak 1.09E-06 7.01E-07 2.03E-07 2.90E-07 9.23E-07 2.56E-06 3.37E-06 1.22E+00 4.32E+00
Time to 
peak 2.34E+05 1.32E+05 8.04E+049.89E+041.98E+054.82E+057.30E+05 2.04E+00 1.00E+01

 

Figure 19.-ECDF for the Peak annual dose 
rate in biosphere due to 129I. 

Figure 20.-ECDF for the Time to the peak. 

 
Figure 21.-Scatterplot. Peak annual dose rate in biosphere due to 129I vs. Time to the peak.  
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8.1.2 Sensitivity analysis results 

8.1.2.1 Sensitivity analysis results for the Peak annual dose rate in biosphere due to 129I 
Table 5.-Regression analysis, Sobol sensitivity indices computed via CR (CR-VCE) and non-

parametric statistics results for the Peak annual dose rate in biosphere due to 129I.  
Input 

parameter 
Regression analysis Correlation 

ratios 
Non-parametric statistics 

Rule 10%/90% 
 Raw values Logarithmic 

transform. 
Ranks    

 SRC SRC SRRC 1st order S. 
indices 

Mann-
Whitney* 

Smirnov* 

DIFFI -2.22E-02 -1.90E-02 -2.56E-02 3.11E-03  
PORMAT -3.37E-02 5.87E-03 -8.86E-03 3.84E-03  
KDBEI -2.17E-01 -2.36E-01 -2.49E-01 5.16E-02 4.35E-04(6) 8.88E-03(6)

POR_AN_BUF -1.57E-03 -1.18E-02 2.21E-03 1.91E-03  
POR_AN_GRA 1.76E-02 -1.50E-02 -2.61E-06 4.02E-03  
R1000 1.11E-01 1.70E-01 1.46E-01 4.92E-03  
VC1 6.25E-03 -5.92E-04 -5.85E-03 2.38E-03  
WATER_NF 4.43E-01 5.91E-01 5.75E-01 2.61E-01 0.0(1) 1.29E-16(1)

FAIL -2.61E-02 -1.27E-02 -1.45E-02 4.61E-03  
SLOPE 2.93E-02 6.84E-03 1.52E-02 2.44E-03  
MEAN -6.14E-02 -4.25E-02 -3.88E-02 5.86E-03  
GAPI 4.09E-01 4.16E-01 4.02E-01 1.47E-01 0.0(2) 9.46E-15(2)

WATER_TT0 -3.35E-01 -2.94E-01 -2.97E-01 1.12E-01 1.77E-15(3) 5.35E-13(3)

FWA -4.06E-02 -4.06E-02 -3.25E-02 3.36E-03  
KINEM_POR -3.37E-01 -3.63E-01 -3.80E-01 1.42E-01 2.83E-10(4) 7.13E-08(4)

PATH_LENG 3.55E-02 1.67E-02 4.03E-02 4.66E-03  
PECLET 1.36E-01 1.49E-01 1.65E-01 4.74E-02 3.10E-04(5) 6.21E-03(5)

THICKM -6.12E-02 -3.20E-02 -4.91E-02 2.12E-03  
R2 / σ2 fraction 6.35E-01 8.00E-01 7.87E-01 8.05E-01 NA NA 
*The number between brackets stands for the importance order. 1 stands for the most important input. 
NA stands for Not Applicable. 

Figure 22.-Cobweb plot for the Peak annual 
dose rate in biosphere due to 129I. 

Figure 23.-CSM plot for the Peak annual 
dose rate in biosphere due to 129I. 
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8.1.2.2 Sensitivity analysis results for the Time to the peak annual dose rate in biosphere 
due to 129I 

Table 6.-Regression analysis results, Sobol sensitivity indices computed via CR (CR-VCE) 
and non-parametric statistics results for the time to the peak.  

Input 
parameter 

Regression analysis Correlation 
ratios 

Non-parametric statistics 
Rule 10%/90% 

 Raw values Logarithmic 
transform. 

Ranks    

 SRC SRC SRRC 1st order 
sens. indices 

Mann-
Whitney 

Smirnov 

DIFFI 1.69E-02 7.65E-03 1.42E-02 8.29E-04   
PORMAT 3.43E-02 8.72E-03 2.61E-02 6.52E-03   
KDBEI 1.65E-01 1.61E-01 1.60E-01 1.90E-02 8.66E-04(4) 3.98E-03(4) 
POR_AN_BUF -1.03E-02 -3.76E-03 -1.53E-02 1.61E-03   
POR_AN_GRA 1.53E-02 2.94E-02 7.42E-03 1.06E-03   
R1000 8.57E-02 7.11E-02 6.49E-02 1.37E-02 9.09E-03(5)  
VC1 5.20E-03 -9.33E-04 6.17E-03 2.44E-04   
WATER_NF -2.50E-01 -3.77E-01 -3.55E-01 1.42E-01 2.45E-09(3) 8.93E-10(3) 
FAIL 1.59E-02 2.92E-03 1.92E-02 3.86E-03   
SLOPE -2.77E-03 -1.91E-03 -1.18E-02 1.04E-03   
MEAN 9.05E-02 9.44E-02 1.04E-01 9.51E-03   
GAPI -6.70E-02 -5.98E-02 -4.96E-02 1.56E-03   
WATER_TT0 4.91E-01 6.09E-01 5.92E-01 2.31E-01 0.0(2) 4.54E-13(2) 
FWA 1.05E-01 8.94E-02 7.52E-02 1.05E-02   
KINEM_POR 6.09E-01 5.68E-01 5.64E-01 3.49E-01 0.0(1) 9.23E-24(1) 
PATH_LENG 1.33E-02 5.82E-03 -3.12E-02 2.98E-03   
PECLET 6.62E-02 7.25E-02 5.77E-02 1.18E-03   
THICKM 5.82E-02 4.41E-02 6.08E-02 3.65E-03   
R2 / σ2 fraction 7.31E-01 8.82E-01 8.40E-01 7.99E-01 NA NA 
*The number between brackets stands for the importance order. 1 stands for the most important input. 
NA stands for Not Applicable. 

 

Figure 24.-Cobweb plot for the time to the 
Peak annual dose rate in 
biosphere due to 129I. 

Figure 25.-CSM plot for the Time to the Peak 
annual dose rate in biosphere due 
to 129I. 
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8.2 Time-dependent output variables (Annual dose rate in biosphere due to 
129I at all times and at six selected times) 

8.2.1 Uncertainty analysis results  

8.2.1.1 Uncertainty analysis results (all times) 

 

Figure 26.-Evolution of 1000 runs of the 
Annual dose rate in biosphere due 
to 129I. 

Figure 27.-Evolution of main uncertainty 
statistics for the Annual dose rate 
in biosphere due to 129I. 

 
Figure 28.-Evolution of the Annual dose rate 

in biosphere due to 129I Skewness 
coefficient. 

Figure 29.-Evolution of the Annual dose rate 
in biosphere due to 129I kurtosis. 
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8.2.1.2 Uncertainty analysis results (6 selected times: 3.0E+4, 1.0E+5, 3.0E+5, 1.0E+6, 
3.0E+6 and 1.0E+7 a) 

 
Table 7.-Uncertainty statistics for the Annual dose rate in biosphere due to 129I at six selected 

times. 
Time 
(a) Mean Std. dev.

Quantile 
1% 

Quantile
5% Median

Quantile
95% 

Quantile
99% 

Skewness 
coefficient Kurtosis 

3·1041.08E-09 7.78E-09 2.63E-27 1.43E-242.49E-201.62E-093.89E-08 1.09E+01 1.40E+02 
105 4.62E-07 7.17E-07 3.72E-17 3.77E-131.05E-072.22E-063.00E-06 1.94E+00 6.21E+00 
3·1054.30E-07 2.32E-07 5.63E-08 1.18E-073.98E-078.64E-071.12E-06 7.63E-01 3.49E+00 
106 1.58E-07 7.92E-08 5.15E-08 5.79E-081.42E-073.03E-073.53E-07 6.02E-01 2.45E+00 
3·1061.21E-07 6.03E-08 4.41E-08 4.74E-081.08E-072.34E-072.52E-07 5.41E-01 2.09E+00 
107 4.20E-08 3.37E-080.00E+00 0.00E+004.33E-089.84E-081.05E-07 1.01E-01 1.82E+00 

 

 

Figure 30.-ECDF for the Annual dose rate in 
biosphere due to 129I at six 
different times. 

Figure 31.-Boxplots for the Annual dose rate 
in biosphere due to 129I at six 
different times. 
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8.2.2 Sensitivity analysis results (all times) 

 

Figure 32.-Regression analysis results* (raw 
values) for the Annual dose rate in 
biosphere due to 129I. 

Figure 33.-Regression analysis results* 
(ranks) for the Annual dose rate in 
biosphere due to 129I. 

 
Figure 34.-First order sensitivity indices† and output variance fraction due to first order 

sensitivity indices for the Annual dose rate in biosphere due to 129I. 

*Only input parameters whose associated SRC or SRRC exceeds 0.1 at least at one time point are 
represented on this plot. †Only input parameters whose first order effect contribution to the output 
variable exceeds 1% at least at one time point are represented on this plot.   
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9. Conclusions 

In this report we have described a set of statistics and techniques to perform uncertainty and 
sensitivity analysis in the framework of a PA. We have stressed their properties and also 
their deficiencies. We have also provided a template to use them efficiently, dividing them 
into either suggested or optional depending on the type of output variable under study. 
Finally, the template developed has been implemented using as a test data set the results 
obtained for the Biosphere annual dose rate due to 129I in the Spanish reference concept in 
granite.  
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Annex A: Monte Carlo simulation 

Whenever the system model is available and the distributions of the input parameters have 
been derived, the next step in the PA study is to propagate uncertainties in order to get 
information about the distribution of the output variables. Analytical uncertainty propagation 
methods can only be used for very simple systems with very few parameters. In more 
complex cases other methods need to be adopted. The most suited method, and in fact the 
most used one is the Monte Carlo method. 

THE MONTE CARLO METHOD 

The Monte Carlo method consists in sampling at random the vector of input parameters, 
running the system model computer code for each sample of that vector and getting a 
sample of the vector of output variables. Later on, the characteristics of the output variables 
may be estimated using the output samples obtained. One of the advantages of using the 
Monte Carlo method is that all statistical standard methods we need to estimate the output 
variables distributions and to test any hypothesis may be used. This makes it the most 
straightforward and powerful method available in the scientific literature to deal with 
uncertainty propagation in complex models. This method is valid for models that have static 
and also dynamic outputs. It is adequate for working with discrete and continuous inputs and 
outputs, and the implementation of computational algorithms required has no fundamental 
complexity.  
 

Figure A.1.- Simple random sample of size 100 of 
two random variables uniformly 
distributed in the region [0,1]x[0,1].  

Figure A.2.- ECDF obtained from a simple 
random sample of size 100 of 
Y=X1+X2 and its theoretical CDF. 

 

Monte Carlo maps the input space into the output space point by point. In order to see this, 
let us consider a very simple model: Y=X1+X2. Suppose X1 and X2 follow independent 
uniform distributions both of them defined in the interval [0,1]. For this simple model an 
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analytical propagation of uncertainties is feasible and the output Y follows a triangular 
distribution defined in the interval [0, 2] and whose mode, mean and median are 1. This 
propagation may be done via Monte Carlo. First, a sample of size 100 is taken in the input 
space (see figure A.1). For each point shown in figure A.1, the value of the output is then 
computed. An empirical cumulative distribution function is built from the 100 values obtained 
(see figure A.2). For the sake of comparison the actual CDF of Y has also been drawn.  

Monte Carlo may also be seen as a numerical integration method. In the same example, let 
us consider that we are primarily interested in the estimation of the mean of Y. This means 
that we are trying to estimate  

21
]1,0[]1,0[

21 )( dxdxXXY ∫ ×
+=μ .                 (A.1) 

One of the possible approximations to compute this integral is to take the sample considered 
in figure A.1 and figure A.2 and to calculate the arithmetic mean 

( )∑ =

=
+=

100

1 21100
1ˆ i

i iiY xxμ .                                                        (A.2) 

It is important to remark that the standard deviation of this estimator is  

nYY
/ˆ σσ μ = ,                                                                      (A.3) 

where σY is the standard deviation of the output Y.  

 

Figure A.3.-  Histogram of the sample means 
obtained from 50 simple random 
samples of size 100 obtained via 
Monte Carlo simulation. 

Figure A.4.- ECDFs obtained from 50 simple 
random samples of size 100 obtained 
via Monte Carlo simulation. 
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Figure A.3, which shows the histogram obtained from 50 simple random samples of size 100, 
similar to the one shown on figure A.1 and figure A.2. In this plot we can see that the range 
of Yμ̂  is roughly 0.2, which means it represents one tenth of the range of Y (the range of this 
triangular distribution is 2). Figure A.4 shows the corresponding ECDFs.  

It is important to remark that the standard error of Yμ̂  does not depend on the dimension p of 
the space where the integral is computed, and that consequently the Monte Carlo method 
does not suffer from the curse of dimensionality. Metropolis and Ulam (1949) is the seminal 
paper about Monte Carlo, where many interesting suggestions are made about its 
applicability. 

VARIANCE REDUCTION TECHNIQUES 

The computational time to perform a Monte Carlo analysis depends on the number of 
simulations and cost per simulation. The computational time for complex problems with a 
large number of simulations often become prohibitive. The cost for each simulation can be 
reduced by simplifying the mathematical description of the problem. A second alternative is 
to reduce the number of simulations compared to standard random sampling without 
sacrificing the precision and confidence intervals of the outputs. Such techniques are 
referred to as Variance Reduction Techniques. Main techniques are Latin Hypercube 
sampling (LHS), stratified sampling, control variates, importance sampling and antithetic 
variates. In the following pages we discuss about the first three. Readers interested in getting 
further details about these techniques are suggested to see Hammersley and Handscomb 
(1964), Rubinstein (1981) and Robert and Casella (2004). 

Stratified sampling 

Input parameters may vary considerably. By stratification the population is sub grouped into 
relatively homogenous subgroups. The sampling is then performed for each of the strata. 
The strata must be mutually exclusive and collectively exhaustive. Stratified sampling is 
based on the fact that the variance of any random variable, once it has been divided in 
strata, may be decomposed into two contributions: the variability within each stratum and the 
variability between different strata, which means 
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22 )( μμωσωσ ,                                      (A.4) 

where the first summand represents the variability within the h considered strata and the 
second one represents the variability between different strata. ωi stands for the probability of 
stratum i, and μi and σi stand for the mean and the standard deviation of the (output) variable 
Y also in stratum i. If the sampling of each observation is restricted to a given stratum, its 
variability will be the variability of that stratum (σi) rather than the whole variability of Y (σ). 
The estimate for the mean of Y under stratified sampling is 
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where iμ̂  is the estimate of the mean of Y in stratum i, which normally is computed as the 
average of the values of Y obtained in that stratum (yij), as shown in (A.5). ni is the sample 
size in stratum i and the whole sample size is n=n1+…+nh. This estimator is an unbiased 
estimator of Y’s mean. It may be easily demonstrated that the variance of this estimator for a 
given number of samples is reduced with respect to the estimator provided by simple random 
sampling according to  

2
1

)(1)ˆ()ˆ( μμωμμ −−= ∑ = i
h

i iS n
VarVar   ,                                                (A.6) 

which means that the larger the differences between the means of the different strata the 
larger the decrease in the variance of the stratified sampling estimator. 

The main problem affecting stratified sampling is that ideally what should be stratified is the 
output space, so that the second term on the right hand side of (A.6) would be large and so it 
would be profitable to stratify. Unfortunately, what can be easily stratified is the input sample 
space, which doesn’t mean that the corresponding stratification in the output space will be so 
good. Under those circumstances, when large overlaps between different strata happen, the 
benefit from stratifying would not be so important, though some benefit will always be 
obtained according to (A.6). 

Once the sample size has been chosen, there are two problems to be solved: 1) how to 
create the strata and 2) the sample size within each stratum. There is no clear rule to 
partition the input sample space. When no additional information is available about the 
system model, the most common strategy is to build a net of hypercubes via Cartesian 
product of the stratification performed in each input variable. When some information is 
available, it can be used for creating the stratification. In general, there are two ways to get 
information about the model: Studying the equations of the model and getting a small size 
sample. The study of the equations of the model may provide information on the relation 
between inputs and outputs and on the importance of combinations of specific sets of inputs, 
see ‘Input Space Dimension Reduction’ within this annex. A small size sample could be 
obtained via simple random sampling and it could be used to perform Sensitivity Analysis 
(SA). The use of SA techniques could help identifying the most relevant input variables; 
stratification could be performed only on these relevant input variables 

Regarding the sample size per stratum, there are several options. The first option is to take 
proportional sampling, which means that the sample size in each stratum is proportional to 
the probability of the stratum: ni=nωi. Further improvement may always be achieved (McKay 
et al. (1979)) if the sample space is further stratified to getting as many strata as samples 
(one observation per stratum). In that case the reduction in the variance of the estimator with 
respect to simple random sampling is 
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Not only the mean of the output is more accurately estimated when stratified sampling is 
applied, but its distribution is better estimated due to the evenness in the sampling all over 
the sampling space, no region is either over-sampled or under-sampled. Figure A.5 provides 
an idea about the way to get a stratified sample of size 9 with one observation per stratum 
(each stratum has probability 1/9) in a 2-D input sample space. Figure A.6 provides the same 
information when the stratification is done on only one of the input variables (X). 
 
 

Figure A.5.- Stratified sample with nine 
observations for two variables; one 
observation per stratum, probability 
of each stratum 1/9. 

Figure A.6.- Stratified sample with nine 
observations for two variables; one 
observation per stratum, probability 
of each stratum 1/9. 

 

Latin Hypercube Sampling (LHS) 

Latin Hypercube Sampling (LHS) is a cost-effective and reliable extension of stratified 
sampling, designed to generate collections of parameter values from multivariate 
distributions. In order to get a sample of size n, the procedure is the following one:  

• a stratified sample is obtained for each input variable (n strata with probability 1/n 
each one and a sample of size 1 per stratum), 

• get a permutation of each one of the samples of each input variable  

• combine the first observations of all the variables (after permutation) to get the first 
observation of the input vector, combine the second observations of all the variables 
(after permutation) to get the second observation of the input vector and so on.  
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The procedure above is generally complemented by techniques to fill the input space in an 
optimal way, for instance by maximizing the minimum distance between the samples points. 
McKay et al. (1979) shows LHS produces unbiased estimators for the mean and the CDF of 
the output. They also demonstrate that a sufficient condition to get an estimation error for the 
sample mean and the CDF smaller that in the case of random sample is that the model has 
to be monotonic in all its input variables. Stein (1987) proved some asymptotic properties of 
LHS under general conditions: the variance of the estimators provided for the mean and the 
CDF are smaller (asymptotically) than the ones obtained under simple random sampling, 
with the degree of variance reduction depending on the additivity of the model. The estimates 
do also follow, asymptotically, a normal distribution. Iman and Conover (1982) developed a 
method to induce rank correlation between input variables sampled under this scheme and 
Stein (1987) introduced a method to induce correlations between input variables. Figure A.7 
shows the way to generate a sample of size 5 through this method for a bivariate random 
vector. 

 

 
Figure A.7.- LHS sample of size 5 for two variables. Each stratum has the same probability 

  

Control variates 

This technique is based on decomposing the output random variable Y as a sum of two 
ancillary random variables Y’ and Y’’ in such a way that Y’ should have a mean analytically 
and easily computable, or at least with a well known dependence on the vector of input 
parameters X (so that its mean could be computed with the needed accuracy at a low cost), 
and Y’’ should have a small variance. Under these conditions, the mean may be split up as  

∫∫∫ ⋅⋅′−+⋅⋅′=⋅⋅=
xxx SSSy dfyydfydfy xxxxxxxxxx )())()(()()()()(μ  ,                         (A.8) 
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where y´´(x)= y(x) − y´(x)  (figure A.8). Again, as in the case of importance sampling and 
stratified sampling, we need additional information to find Y’. If no such theoretical 
information is available, the most straightforward way to get it is using a previous small size 
sample. That sample may be used, for instance, to build a response surface (see Myers and 
Montgomery (2002)) that captures the main characteristics of the functional dependence of Y 
over X. The response surface obtained would be Y’ (also represented as y´(x) in this text). 
On one side Y’ will usually be a polynomial that may be used to propagate uncertainty 
analytically or computationally using huge sample sizes, estimating the first integral on the 
right hand side of (A.8) with no or negligible error. On the other side, if the quality of this 
response surface is good, y(x) − y´(x) would have small values for all values of input vector x, 
so that the last integral in (A.8) would be the only one introducing relevant error in the 
estimation of the mean, but much smaller that the one introduced by normal random 
sampling.  

 
 

 
Figure A.8.- Intuitive idea behind control variates sampling technique. 

 

INPUT SPACE DIMENSION REDUCTION  

Let us consider a system of functional equations where Y = (Y1, … , Yn) are the dependent or 
output variables and X = (X1, … , Xm) are the independent variables (e.g., space coordinates 
and time). Let θ= (θ1, … , θP) be the parameters of the system, that is, coefficients of the 
differential equations and of the initial and boundary conditions. The solutions of the system 
are Yj = Ij (X; θ). 

In physics, one speaks of similarity between two problems when one can transform one 
problem into the other by a change of scale in the variables. It is shown that this is possible 
when a set of dimensionless numbers (in mathematical terms, we shall speak instead of 
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invariant functions), which are functions of the parameters θ; coincide in both problems. A 
classical example is the Reynolds number in fluid mechanics. The dimension of the 
parameter space, originally p, can thus be reduced to the number of dimensionless quantities 
that define the system of functional equations. This problem is referred to in the literature as 
dimensional analysis, and though in many physics and engineering works it is formulated in 
terms of physical magnitudes and dimensions (Buckingham (1914); Langhaar (1951); 
Palacios (1964); Szirtes (1998)). A more abstract, mathematical, and hence physics 
independent language, is preferable when dealing with propagation of uncertainties, such as 
in Moran (1971). 

Moran and Marshek (1972) generalized dimensional analysis consists of finding a set of 
linear transformations: 
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of the Y, X,  θ, where the Kj, j = 1, … , n + m + p are constants, such that the system of 
functional equations is invariant under the transformations, that is, Yj = Ij (X; θ) transforms to  
Y'j= I'j (X'; θ'); where X'=X1',...,X'm and θ'=(θ'1,...,θ'p). We note that the prime symbol stands 
for variable transformation and not for array transposition. A more general class of 
transformations could have been used, but we are restricted here to linear transformations 
(scale changes) because they have proved useful in many physical problems, while 
maintaining mathematical simplicity and a clear physical interpretation. 

After introducing the transformations or scale changes into the system equations and 
boundary and initial conditions, and imposing the condition of invariance (the system 
equations maintain the same form before and after the transformation; Yj = Ij (X; θ) ⇔  Y'j= I'j 
(X'; θ')), there appear restrictions linking the values of the Ki, i =1, ... , n + m + p.  In most 
cases, the restrictions will reduce their degrees of freedom. So if initially there are n+m+p 
transformation constants Ki and q restrictions, there will finally be r = n+m +p-q degrees of 
freedom for the Ki. Then, the transformations can be defined in terms of a reduced set of 
constants, which are called Aj, j=1,…,r, and the set of transformations may me rewritten as 
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where the aji, bkl and cet are exponents. In fact each restriction defines an invariant function or 
dimensionless number 

pnn XXYY γγββαα θθπ 111111 ......... 111=                             (A.11) 
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where the αi, βj, γk are also exponents, in such a way that (see Moran and Marshek (1972)) 
the system of functional equations can be expressed in terms of these invariant functions, 
instead of in terms of the original and larger set formed by Y, X, θ. The calculation of the 
invariants and of the expression of the system model in terms of the invariants is formalized 
in the theorems of Moran and Marshek (1972); see also appendix A of Mira et al. (2004) for 
details. 

Usually, the reduction of dimension is in the space of input parameters and input variables 
(X, θ), only very infrequently is the reduction performed in the space of output variables. 
Even when a reduction of dimension is obtained in the space of input parameters, it does not 
necessarily mean that this produces a benefit in the propagation of uncertainties. It is 
possible that the reduction of dimension happens in the part of the space of input parameters 
that is not affected by uncertainty (known constants); in that case no improvement is 
obtained. Moreover, in order to get some benefit, variance reduction techniques have to be 
applied in combination with dimension reduction. If an effective dimension reduction is 
obtained, using simple random sampling on this space doesn’t lead to a net decrease in the 
variance of the estimators of the outputs; a simple random sample of the input space 
produce a simple random sample of the output space independently of the dimension of the 
equivalent input sampled space.  

Mira et al. (2004) describe an application of dimension reduction obtained via dimensional 
analysis for the propagation of uncertainties of a simplified HLW repository. In this 
application, the original space of input parameters and input variables has dimension 7 and 
the transformed one 4. Nevertheless, the real reduction obtained is from 3 to 2 since only two 
input parameters and one input variable are affected by uncertainty and these inputs are 
concentrated in only 2 invariants in the transformed input space. Mira and his colleagues 
compare in their work four sampling techniques: simple random sampling, LHS and stratified 
sampling in the original 3-D input space and stratified sampling in the 2-D transformed input 
space. For this comparison 60 samples of size 64 were used. Figure A.9 shows the means of 
the means for the flow of 129I getting into the biosphere at different times. All techniques 
produce unbiased results. Figure A.10 shows the standard deviations of the means for the 
same case and illustrates the improvement that is obtained when combining dimension 
reduction and stratified sampling with respect to the other techniques applied on the original 
input space. The results for LHS in the 2-D space shouldn’t be taken into account since it 
shouldn’t be called LHS the way this sampling scheme was actually applied in this test case. 
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Figure A.9.- Evolution over time of the mean of the means for different sampling schemes 

with (dimensions reduction (2-D) curves) and without (no dimension reductions 
(3-D) or simple random curves) input space dimension reduction obtained via 
Dimensional Analysis.  

 

Figure A.10.- Evolution over time of the standard deviation of the means for different 
sampling schemes (2-D curves) and without (3-D or simple random curves) input 
space dimension reduction obtained via Dimensional Analysis. 

Dimension reduction in the input space may also be obtained in a more immediate, less 
sophisticated way, referred to as trivial reductions of dimension. It frequently occurs that in 
the differential equations which describe the behavior of the system, some coefficients 
appear as elementary functions of a number of, let us say, original coefficients, such that, 
either due to physical reasons or because of reasons related the way experts address the 
problem, the uncertainty has been expressed in terms of probability distributions for the 
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original coefficients. Bolado and Mira (2004) showed that, as in the case of dimension 
reduction obtained via dimensional analysis, smaller errors are made in the estimation of the 
outputs when trivial reductions of dimension are combined with variance reduction 
techniques such as stratified sampling. 
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Annex B: Classical inference methods 

Classical inference methods are based on the assumption of having a random sample. The 
target is to determine the PDF that generated the random sample. This process may be 
divided in three steps: 
 

• Model identification 

• Parameter estimation, which is divided in two parts 

o Point estimation 

o Interval estimation 

• Diagnosis of the model 
 

Model identification consists in finding the most appropriate probability model (uniform, 
normal, log-normal, exponential, Weibull, etc.) for the sampled data. This task needs the use 
of graphic tools such as histograms, in addition to the experience in the field under study. 
Furthermore experts in the field will often have an idea of the distributions that could best 
represent the data. This part of the process certainly involves subjective elements. 

Once the probability model has been identified, the parameters need to be determined. Most 
probability models are characterised by a set of parameters (parametric models), as for 
example the mean, μ, and the standard deviation, σ, in a normal (Gaussian) probability 
model. Estimation is done via techniques of point estimation. These techniques allow 
identifying a best choice for those parameters. Identifying best choices does not mean that 
those are the only acceptable ones; other similar values could also be acceptable. A 
measure of error or of likely alternatives is also needed. This is provided by interval 
estimates. 

The last step consists in checking that the hypotheses considered in the whole process were 
correct. Three hypotheses are normally used: the type of probability model, the 
independence between the different observations and the homogeneity of the sample.  

In the following pages special attention will be dedicated to both types of parameter 
estimation (step 2) and to checking that the assumed probability model is good enough (first 
hypothesis tested in step 3). 

POINT ESTIMATION 

The best-known and most widely used methods are the Maximum Likelihood Method and the 
Method of Moments. The main shortcoming of all these methods is their requirement of 
sample sizes to get good quality estimates.  In practical situations with real engineering 
facilities it may be quite difficult to get the required sample size.  
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Method of moments 

Method of Moments is probably the oldest inferential method to estimate the parameters of a 
PDF. K. Pearson developed the method of moments by the end of 19th century. The idea is 
quite simple. It consists in taking as an estimator of a parameter its equivalent sample 
quantity. So, the sample mean is the estimator for the mean, the sample variance is the 
estimator for the variance and so on. 

Maximum Likelihood method  

The Maximum Likelihood Method is the most widely used and most powerful estimation 
method in the classical context. Let us assume that we wish to study a random variable X 
(representing a parameter affected by uncertainty) of a known distribution function type f(X|θ, 
but of unknown parameter θ. In order to estimate θ we take a random 
sample ),...,,( 21 nXXX=X , which is assumed to be a random vector, whose components are 
independent and identically distributed (iid), so that its joint probability density function is 

∏ =
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n

i in XfXXff
11 )(),...,()( θθθX .                                                   (B.1) 

It is important to notice that, in this expression, under the classical view, before sampling, θ is 
unknown, but has an assigned value that determines what regions of X are more likely and 
what regions are less likely. So, this is a function whose unknowns are X . This is the 
meaning before sampling. As soon as the sample is available, X is known, while θ  remains 
unknown. The objective is to determine what value, among all the possible values of θ, 
makes the sample actually obtained the most likely one. The problem is hence to find the 
value of θ for which the function defined in (B.1) attains its maximum value. As it is 
convenient to look at the problem after getting the sample, expression (B.1) is usually written 
as  
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which means that, after sampling, the probability density function of the sample vector is 
changed into a function of the unknown parameter θ. ‘L’ stands for ‘Likelihood’. From a 
practical point of view, the function whose maximum is actually computed is not L, but its 
logarithm )( Xθl . Both functions reach a maximum at the same point since the transformation 

to get one from the other one is a monotonic transformation.  

As an example, let ),...,,( 21 nXXX=X be a sample of size n of a Gaussian random variable 
whose variance σ2 is known. We wish to estimate the mean μ of the random variable under 
study.  Under these circumstances, the likelihood function is 
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whose logarithm is 
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In order to compute the value of μ for which this expression reaches a maximum, we 
compute its first derivative with respect to μ 
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The maximum is obtained when this expression equals zero, which happens for the value 
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The reader may check, by computing the second derivative that, indeed, the likelihood 
function reaches a maximum when μμ ˆ=  (second derivative is less than zero when μμ ˆ= ). 
The method may also be applied when a PDF is defined through a vector of parameters; in 
that case the usual rules for maximizing a multi-parameter function must be applied (to equal 
first partial derivatives to zero and to check conditions imposed on the Hessian matrix 
evaluated at the point where first partial derivatives are zero). The method provides a single 
value as an estimate. If needed, a confidence interval with the desired degree of confidence, 
may be obtained using interval estimation theory.  

The maximum likelihood method has several properties that makes it the most widely used 
estimation method Mood et al. (1974): 

• The estimators obtained through this method are asymptotically unbiased (the limits 
of their expected values when the sample size tends to infinite are the true values of 
the parameters). 

• They are asymptotically normal since their distributions become normal when the 
sample size tends to infinite. 

• They are asymptotically efficient; for large sample sizes, they are the most accurate 
estimators. 

• They are sufficient since they summarise all the relevant information contained in 
the sample. 

• They are invariant; ifθ̂ is the maximum likelihood estimator of θ, and )(' θθ f= , 

then )ˆ(θf  is the maximum likelihood estimator of θ´. 
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Table B.1.- The most useful probability distributions functions, their parameters and their 
maximum likelihood estimators. *The solutions of this system of equations, where ψ stands 
for the digamma function, are the maximum likelihood estimators. †c is estimated recursively 
from the second equation, later on its estimate is substituted in the first one in order to get 

the estimator of α. 
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INTERVAL ESTIMATION 

The purpose of point estimation is to give some single “best” value of each unknown 
parameter, based on sample data. Nevertheless, any point estimate cannot completely 
describe the distibution. Due to the way the estimation process is conducted, the estimate 
and the actual value of the parameters are close, but they are usually different. Scientists 
and engineers try to provide, at least, a measure of the error made when a point estimate is 
given. Interval estimation was created to solve this problem. 

Confidence intervals are the main tool to estimate intervals for a given parameter in a 
probability model. The theory of confidence intervals is based on the study of the distribution 
of the sample mean, the sample variance and other statistics and on the concept of pivotal 
quantity. If we take a sample of size n from a Gaussian variable and we compute the sample 
mean we will get a given value, usually close to the mean μ of that variable. If we get a new 
sample of size n, we can compute a new sample mean. We may repeat the same process k 
times and we will get a sample of size k of the sample mean based on n observations. By 
plotting these k values as a histogram, we will get an idea of the distribution with the 
associated sample mean. Any standard statistics book (see Mood et al. (1974) or Casella 
and Berger (1990)) shows that, for a Gaussian variable, the sample mean follows a 
Gaussian distribution with mean μ and standard deviation nσ . The sample mean as a 
random variable has the same mean as the variable itself but its standard deviation is 
smaller. In fact, the larger n, the smaller its standard deviation. Additionally, its distribution is 
also normal. Taking into account the properties of normal distributions, this means that the 
quantity ( ) ( )nX σμ−  follows a standard Gaussian distribution with mean=0, standard 
deviation=1. This quantity is referred to as ‘pivotal quantity’; it is a function of the sample 
values and the parameter studied but whose distribution does not depend on the actual value 
of the parameter. Knowing the distribution of this pivotal quantity, we obtain 

( ) ( )[ ] ( )[ ] ασμασμ ααα −=±∈⇔−=≤−≤− 11 222 nzXPznXzP  ,                        (B.7) 

where zα/2 stands for the 100(1-α/2)% percentile of the standard Gaussian distribution. 
Expression (4.7) means that the interval 
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is a 100(1-α)% confidence interval for the mean of that normal distribution whose standard 
deviation is known. Typically α is set to 0.05 and then zα/2=1.96. In this case the interval 
obtained is a 95% confidence interval. 
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Table B.2: Confidence intervals for normal, exponential and generic probability distributions. 
†χ2

α/2 stands for the 100(1-α/2)% percentile of the corresponding χ2 distribution (i.e. with as 
many degrees of freedom as indicated in the fourth column of the table). * Stands for 

asymptotic results, which means that they are valid for large sample sizes; all the others are 
exact results. 
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Interpretation of confidence intervals 

Suppose that a pivotal quantity is used to estimate a 100(1-α)% confidence interval ],[ 21 θθ  
for a given parameter θ of a probability model according to the procedure above described. A 
priori, the probability that the interval ],[ 21 θθ contains θ is 100(1-α)%. The values θ1 

and θ2 are computed on a sample; once they are computed, the true value of the unknown 
parameter is either in the interval ],[ 21 θθ or outside it, hence we cannot speak about 
probability any more. By repeating the experiment (i.e. by taking different samples and by 
computing the interval ],[ 21 θθ ) a certain number of times, in average 100(1-α)% of the 
cases, the true parameter will be in the confidence interval. But we don’t know in which 
cases this will happen. This is the reason why the well-known expression “with confidence 
100(1-α)% the parameter lies in the confidence interval” is used. Figure B.1 shows the 
results of generating via sampling 48 95% confidence interval. Only three of them do not 
contain the real value of the parameter (dashed line), which is close to what would be 
expected, between 2 and 3 intervals should not contain the real value (5% of 48).   
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θ 

Figure B.1.- Repeated confidence interval (vertical lines) together with the true value of the 
parameter (horizontal line). 

The main problem related to the use of confidence intervals is that exact confidence intervals 
are available only for the parameters of a few distributions such as normal, log-normal and 
exponential distributions. For any other distribution, only approximate confidence intervals 
are available, which are based on the asymptotic normality and lack of bias of maximum 
likelihood estimators. Table B.2 shows the most frequently used confidence intervals. Exact 
interval estimates are available for quantiles of any distribution, provided that large enough 
samples are available (see section 4.2.1 in the main report).  

GOODNESS OF FIT TESTS 

The last step of the inferential process is to check if the hypotheses under which it has been 
developed are true. The main hypothesis is the selected probability model. After selecting the 
model, the point estimation gives the best choices for the values of the parameters subject to 
some criteria (maximisation of the likelihood function or some other one). Both sets of 
information define completely the law that supposedly generated the data under study. 
Nevertheless, the best choice could be ‘not good enough’. This is what we try to find out 
using goodness of fit tests. The main tests are the χ2 (chi-square) test and Kolmogorov’s test. 

χ2 (chi-square) test  

The χ2 test is based on the comparison of the histogram of the data with the estimated PDF. 
It consists of the following steps: 

• group the data in k sets as done when drawing a histogram and count the number of 
data in each set (Oi), 

• compute the probability of each set (pi) under the assumed probability law. Compute 
the expected number of data in each set under the assumed probability distribution 
using the formula Ei = npi, 

• compute the discrepancy between what is expected under the assumed model and 
what has been obtained in the sample according to  
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• compare this value with the 1-α quantile of the 2
1−−rkχ distribution ( 2

αχ ). Typically α is 
set to 0.05 or 0.01. 

o if 22
αχχ > , reject the null hypothesis, which means that the PDF obtained 

though the estimation process and the data differ so much that it is very 
unlikely (probability < α) that the data could have been generated under the 
estimated distribution. 

o if 22
αχχ ≤ , accept the null hypothesis. In this case the agreement between the 

estimated PDF and the data is good enough to consider that the PDF could 
have likely generated the data. 

Here 1−− rk is the number of degrees of freedom of the χ2 distribution taken as a reference 
in the test; r is the number of parameters of the PDF that were estimated from the data to 
determine the PDF. So, if we consider that a given set of data could follow a normal 
distribution whose mean is unknown but whose variance is known. To define the PDF 
completely we estimate only the mean from the data. In this case r=1. If we estimate both the 
mean and the variance from the sample, r would be 2. The χ2 test is an asymptotic test, it 
works well with large sample sizes, but it is not recommended to apply it to small data sets 
(in fact many authors discourage its use when the sample size is below 25 or 30).  

Kolmogorov’s test 

Kolmogorov’s test is based on the comparison of the ECDF obtained from the data and the 
estimated CDF. The steps to perform the test are: 

• draw the ECDF based on the data, 

• draw the CDF according to the model selected and the estimated parameters, 

• compute the maximum vertical distance (Dn) between the ECDF and the CDF, 

• compare this value with the 1-α quantile (D(n)α) of Kolmogorov’s statistic (D(n)) 
distribution for a sample of size n. As usual, α is set to 0.05 or 0.01. 

o if Dn > D(n)α, reject the null hypothesis, which means that the CDF obtained 
though the estimation process and the data differ so much as to consider very 
unlikely (probability < α) that the data could have been generated under the 
estimated distribution. 

o if Dn ≤ D(n)α, accept the null hypothesis. In this case the agreement between 
the CDF and the data is good enough as to consider that the CDF could have 
likely generated the data. 
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Kolmogorov’s test is an exact test that can be applied to any random sample, whatever its 
size is, though its capability to detect departures from the null hypothesis is quite limited for 
small sample sizes. 

Example: 

A random sample of size 100 has been obtained. We assume that it comes from a uniform 
distribution defined in the interval [0, 1]. In order to test this hypothesis we perform the χ2 test 
and Kolmogorov’s test. In order to perform the former, we plot a histogram of the data set, 
which is shown in figure B.2, and compare it with what would be expectable from the 
theoretical PDF (see horizontal line at height 10). Then we compute the quantity χ2 =[(11-
10)2/10+(5-10)2/10+(13-10)2/10+…+(10-10)2/10]=5.4. Since 2

05.0
2 9.164.5 χχ =≤= (the value of 

the statistic chi-square does not exceed the 95% percentile of the 2
9χ  - chi-square distribution 

with 9 degrees of freedom), the null hypothesis (the data set comes from a uniform 
distribution defined in the range [0, 1]) is accepted. 
 

Figure B.2.- Histogram obtained from random 
sample of size 100 and the 
corresponding theoretical absolute 
frequency (for uniform distribution). 

Figure B.3.- ECDF obtained from a random 
sample of size 100 and the 
corresponding theoretical CDF. 

In order to apply Kolmogorov’s test to the same data set, we draw the ECDF and the CDF, 
and we compute the maximum vertical distance between both curves, see figure B.3. We 
then compare the value D100 obtained with the 95% percentile of Kolmogorov’s statistic for 
sample size 100. Since D100= 0.070≤0.0136=D(100)0.05, we accept the null hypothesis.  
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Annex C: Properties of Quantile Estimators 

PROPERTIES OF THE EMPIRICAL ESTIMATOR 

The estimator of the α- quantile , ( )
ˆ ˆinf{ , ( ) }n EE nY y F y Yα αα ⎡ ⎤⎢ ⎥

= > =  is biased with the following 

first two moments  

3 2

1 1ˆE
2 2

α
α,n α

α

α α p'(y )(Y ) y Ο
(n )p (y ) n
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and it is asymptotically normal, which means that 
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α αn Y y N
p (y )

→∞ ⎛ ⎞( − )
− ⎯⎯⎯→ ⎜ ⎟

⎝ ⎠
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The variance of this estimator is large, and it increases for extreme quantiles, for which the 
value of the PDF f(ya) is small. Moreover, from the asymptotical law, one can see that 

ˆ ) 0.5α,n αP(Y y≥ ≈ . 

PROPERTIES OF WILKS ESTIMATOR 

The Wilks estimator is the order statistic ( 1)n rY − + . The following proposition helps establishing 

the Wilks formula, which connects n (the size of the sample) and r, ,α β  from 

( 1)( )n rP Y yα β− + > ≥ . 

Proposition:  

The number of times n iid rvs (Y1,…, Yn ) exceed a certain threshold y follows a Binomial 
distribution B(n,F(y)), where F is the CDF of the rv Yi. 

This proposition is used as follows: let (1) ( )( ,..., )nY Y  be the ordered sample, (1) ( )... nY Y≤ ≤ . 

The probability of the event {  of the  are },  ij Y y j> ∀  is computed using the binomial 

distribution: 

 (  of the  are ) (1 ( )) ( )j n j
i

n
P j Y y F y F y

j
−⎛ ⎞

> = −⎜ ⎟
⎝ ⎠

.   (C.4) 

For y yα= , we get  
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(  of the  are ) (1 ) j n j
i

n
P j Y y

jα α α −⎛ ⎞
> = −⎜ ⎟

⎝ ⎠
.        (C.5) 

On the other hand, the event ( 1){ }n rY yα− + >  occurs if and only if at least r of the Yi are > yα . 

This leads to  
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As we want  ( 1)n rY − +  to be sure to the level β, i.e. ( 1)( )n rP Y yα β− + > ≥ , we obtain the « Wilks 

formula » 

1 0
1 (1 ) (1 )

n n r
j n j j n j

n r j

n n
j j

β α α α α
−

− −

− + =

⎛ ⎞ ⎛ ⎞
= − − = −⎜ ⎟ ⎜ ⎟
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∑ ∑     (C.7) 

It is then possible to compute, for ,α β  fixed (for instance 95%, 95%), the couples r, n.  


